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ABSTRACT

Computation of the amplitudes of the diffracted fields which
ar¢ produced when a reflection hologram or a "thick" transmission
hologram is illumineted requires that the 3-dimensional nature of the
holegram be sccounted for. A general analytical method i3 formulated
for computing the diffracted fields in terms of the initial exposing
field, the film characteristics, and the illumination fleld, taking
into account the entire emulsion volume, This method, which is
applicable to both transmissicn and reflection holograms, involves
characterizing the emulsion volume by the volume density of scatter~
ing particles, with the diffracted field being found by coherently

summing the scattered waves, neglecting multiple scattering. The

initial exposing field and the illumination field are expressed in

the form of a sum of plane or quasi-plane waves, and the diffrected

field is expressed as a sum of waves, each of which is found by

This problem con-

////// e basic problem.
8ists of computing the directions, amplitudes, and phases of the
first~-order diffracted vaves produced vhen & 3~dimensional arrsy of
scattering particles having a sinusoidal density distribution is
illuminated by a plane wave. The solution of this problem is con-~
sidered, with the directions and phases of the diffracted fields

being computed for both transmission and reflection holograms, The

amplitudes are computed for the case of transmission holograms and
’ the analytical expressions are evaluated numerically for a number of

particular cases to determine the effect of varying different para-
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meters on the amplitudes of the diffracted waves, The results are
compared vith experimental data obtained by making a careful study
of different holegraphic diffraction gratings.

The results of the analyticel method described above are
comppared with the results of the method whereby the hologram is
characterized by the tranamittance, and it is shown that with respect

to the computation of the directions end phases of the diffracted

wvaves, the two methods are equivalent for the case of transmission
holograms.

The case where the reference beam is composed of a series of
vaves (ghost imaging) is considered using both of the above methods,
and the translational sensitivity and background noise which arise in
this case are investigated, An experiment dealing with translational
sensitivity was carried out and the experimental results were found

to be in good agreement with the theory.

“ " The duplication of holograms is considered and the duplication
process is described in terms of making a hologram of a hologram,
rether than in terms of making a contact print. Experimental results
are presented to support thle point of view and the effects cf vary-
ing the characteristics of the iilumination wave are describded. Th»
duplication of both transmission and reflection holograms is dealt

with and a simple method for duplicating reflection hologreams is

proposed and discussed.
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INTRODUCTION

Helography, or wavefront reconstruction, ianvolves the record-
ing of an interference pattern which is generated by the coherent
superposition of two or more waves. The basic ideas relating to the
holographic process were discovered by Gabor (1) in 1948, who sought
to utilize holography to increase the resolution attainable with the
electron microscope. A considerable amount of work was done during
the 1930's to upply wavefront reconstruction techniques t¢ microscopy,
but experimental work was difficult due to the lack of an intense
source of coherent radiation in the short wavelength portion of the
spectrum®.

The discovery of the gas laser eliminated this difficulty and
made practical the use of new experimental techniques. Leith and

Upatpieks described the holographic pr--ess from the viewpoint of com-

niques (3,4) which mades practical the application of holography to e
wide variety of problems. Before discussing those aspects of holo-
graphy which wilil be of interest here, it may be useful to give &
brief description of the hLolographic process.

The holographic process can be described in genreral terms as

a two=-step process. In the first step an electromagnetic field®#

® See reference (68) for a complete bibliography for the period 1948
to 1965,

## Sound waves have also been used (63).

b
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interacts w.-h a sensitive recording device (such as a photographic
emulsion layer) and changes its characteristics in some manner. 1In
the second step tne recording device (which may heve undergone addi-
tional processing such as development in the case of film) is illumi-
nated with another electromagnetic fleld in order to produce the
"diffracted"” or "reconstructed" field.

The general descripticn of the holographic process given abcve
48 not specific enough to point out those aspects which make it unique-
ly different from other processes which fit this general description,
such as ordinary photography. The fundamental idea which is the basis
of holography is the utilization of the fact that the intensity dis-
tribution in an interference pattern which ia generated by two or more
coherent electromagnetic waves is a function of the phases of the
waves. This idea Is utilized in the recording step, where an eddi-
tional field (called the reference beam) is combined with the "signal"

field whick is to be recorded on the film plate. The resulting inter-.

ference pattern which is recorded in effect contains both amplitude
and phase information of the signal and reference bheams. Thus, by the
use of the phenomena of interference it is possidble to encode both
amplitude and phase information with a recording device such as film
which is sensitive only to the intensity of the exposing field.
Discuscion and Summary of Text

In the following we shall briefly summarize ~ad discuss the
various problems that have been dealt with in this thesis, vithout

sttempting toc trace the development of similar or related work done

In
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by other researchers, as this is done in sotte detail within the
body of the thesis {tself.

In Chapter Ohe we formulete a general uwnalytical method for
computing the diffracted field in terms of the initisl exposing
field, the film characteristics, and the illumination field. The
emuision volume is characterized by the grain density, which spece

ifles the volume dens’iy of arattering perticles, ant the diffracted

field is computed by summing the waves scattered by the grains, neg-
lecting multiple scattering. The neglect of the multiple scatter-
ing allows us to treat the problem of computing the diffracted field
from what might be termed a linear systems approach. We express

both the exposing field and the illumination field as a sum of

plane or quasi-plane waves and obtain the diffracted field in terms
of a sum of plane or quasi-plane waves, vhose amplitudes, directions,

and phases are computed by solving variations of the same basic pro~

— ——~—blem,that of computing the diffracted fields produced when a three- .
dimensional erray of scattering particles having a sinusoidal density
variation is illumiiatud by a plan wave.

We go on in Chapter One to compute the directions and phases
of these diffracted waves, both for transmission and reflection holo-
grams, and demonstrate that wvhep the illumination wave is the ref-
erence beam, the signal beam is reconstructed. A comparison is then
made of transmission and reflection holograms.

In Chapter Two we compare the results of the analysis of

Chapter One with the analysis rormulated by Gabor (5}, which was
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later put in communication theory language by Leith and Upatnieks

(2), and show that vith respect to computing the directions and

pheses of the diffracted waves, the two approaches are egquivalent.

In Chapter Three we copsider the case vhere the reference
beam consists of more than one simple wave, and examine how this
affects the reconstruction of the signal beam. If the reference
beam is quite complicated then the illumination of the developed
hologram plate is accomplished by repositioning the hologram in the
experimental setup. The sensitivity of the reconstruction of the
signal beam to repositioning errors is described in terms of the
analysis developed in Chapter One, and computed for a specific
experiment. This experiment waes carried out and the experimental
results were found to be in good agreement with the theory.

In addition to being sensitive to repositioning errors, holo-
grams with multiple wave reference beams yield a reconstruction of
background noise is investigated and a signal to noise ratio is
defined and computed.

Of particular intereat is the case vhere we are dealing with
Fourier transform holograms with multiple wave reference beams, as
they find use in the area of character recognition and complex spa-
tial filtering. We examine translational sensitivity and background
noise for this case when ve have plane wave and diffuse illumination.

In Chapter Four we extend the analysis of Chapter One to in-

clude the computations of the amplitudes of tue diffracted waves.
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Within the framewvork of that analysis, {t suffices to solve the pro-
blem of computing the amplitudes of the two first-order diffracted
wvaves produced vhen an arbitrary sinusoidal 3-dimensional array of
scattering particles within the emuision layer fs {lluminated by &
plane vave. This is done for an arditrary {llumination plane wave,
taking into account attenuation within the emulsion layer and re~
flection losees at the interfaces. Here, as in Chapter One, mul-
tiple scattering is neglected. The analytical expressions are eval-
uated numerically for certain specisl cases and these results are
compared with experimental data derived from a series of experiments
with holographic diffraction gratings. The agreement between ex-
periment and theory was found to be satisfactory.

In Chapter Five the duplication of holograms is described in
terms of taking a hologram of & hologram, rather then as making a

contact print. The duplication of thick transmission hologram 1s

lumipnation wvave are described. Experiments dealing with the dupli-
cation of holographic diffraction gratings are described and the
experimental results support the point of view taken here. A
simple method for duplication of reflection holograms is described
and the various factors affecting the production of duplicate re-

flection are discussed.

In the Sixth and final chapter the results of this thesis

are summarized and discussed.

|
\
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CHAPTER OKE

SCATTERING THEORY OF VOLUME HOLOGRAMS

1.1 Introduction

Gabor, in his classic paper (5) describes the holographic
process from the point of viev vhich we shall term as the transmittance
approach. Basically, the exposing field is taken to be a complex

scalar guantity of the form

Usu +U = Aelv | (1.1)

where U is assumed to be specified in the plane of the film emulsion
layer. Variations with depth within the emulsion layer are neglected -
and the response of the film is characterized by a parameter ' (the

"gamma" of the film). After processing, the developed film plate or

proportional to [UU']r. that is

v = cluue]’ ) (1.2)

When the holograz plate is illuminated by another field Uz. the

transmitted field UT is assumed to be given by

U, = C'U21 . . (1.3)

T

Equations 1.2 and 1.3 are the fundamental relations used by Gabor and
by the majority of investigators engaging in research in the various .

aspects of holography. The variations in analysis are primarily
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“some offset angle, with higher spatial frequencies corresponding to

concerned with different approaches in the computation of the exposing
field U and in the computation of the transmitted or "diffracted”
field at an cbservation point some distance from the film plate. Leith
and Upatolieks utilized communication theory to put these calculations
in transform language (2), and their approach has been ¥idsly used
with excellent results.

The neglect of the variations with depth within the emulsion
layer (i.c. considering the hologram to be two dimensional) is quite
Justifiable when the spatisl frequencies recorded on the film plate are
low, as was usually the cese in the early work done by Gabor, Rodgers,
and others, prior to the invention of the laser. The invention of the
gas laser with its high brightness and relatively long coherence length
made practical the use of high spatial frequencies in the experimental
configurations firet develop d and demonsirated by leith and Upatnieks

{2,3,4). In these configurations the reference beam is brought in at

larger values of the angle. It was pointed out by Friesem (6) that

as the spacing betvcen fringes becomes comparable vith the emulsion
thickness the film plate can no longer be regarded as two dimensional.
In this case the use of the average transmittance becomes questionable
as the variation of the transmittance with depth should be accounted
for. This does not mean, hovever, that the transmittance approach as
given by equations 1.2 and 1.3 is no longer useful when the spatial
frequencies are high. It will be shown in Chapter 2 that with respect

to computing the direction and phase of the diffracted waves (produced

o v a——
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vhen the hologram is {lluminated) the trensmittance approach yields
results which sre in agreement with the more general theory which will
be presented in this chapteér. where the transmittance approach bréaks
dowr. ia in pradicting the ampiitudes of the diffracted waves. For
example, it has been noted by a number of researchers (7,8,9) that for
hologrems having high spetial frequencies the brightness of the recone
struction is highly dependent on the angle of illumination,

The first attempt at accounting for the finite thickneas of
the emulsion layer appears to have been done by Denisyuk (10,11), who

' In this case

vas primarily concerned with the "reflection hologranm,’
the interference planes (planes of maximum intensity in the inter-
ference pattern generated by the signal and reference beams) are nearly
parallel vith the emulsion surface and the emulsion layer is considered
as thick. P, J. van Heerden, in his investigations of optical infor

mation storage in solids (12,13), tnkes full account of the three-

—  —dimensional nature of the recording of interference patterns vithin a

film emulsion layer. He outlines an anproach whereby the exposing
field is treated as a sum of plane vaves, and considers in some detall
the recording of the interference pattern of two plane waves on film.
Leith and co-workers (8) have investigated holographic data
storage in three-dimensional media, and have anslyzed the effect of
emulsion thickness on the optical charecteristics of the reconstructed
images. They treat in detail the case of a hologram of two plane
vaves (a hologram diffraction grating) noting that the complex spatial

distribution of the light from an object can be decomposed into a




spectrum of plane waves,

Offner, in & recent paper (1L}, considers the specinl case
of a hologram of two point sources and treats the hologram as &
diffraction grating whose purameters are a function of position. lHe
then uses generalized grating equations and ray tracing techniques to
compute the direction of the diffracted wave in order t» examine the
reconstruction process. Offner notes that these techniques can be
extended to more general holograms.

In this chapter the holographic process is described from
a point of view which {s closely related to the ideas of van Heerden
(13) and Offner (14). The exposing field in the vicinity of the film
plate is written as a sum of well-defined wavefronts. The developed
film emulsion layer is characterized by the grain density D, which is

- related to the total electric rield E within the emulsion layer by a

-——-——— —pover sertes in E‘E® . The vartcous interference terms appearing in
the resulting expression for D, which yield the real and virtual
images, are identified, as are those terms which yield ghost images
and higher order images.

The assumption is made that each film grain acts as an inde-
pendent scatterer when the hologream is i{lluminated (i.e.,ve neglect
multiple scattering). It is shown that this implies that with re-
spect to computing the direction and phase of the scattered waves the
various periodicities or "grating terms" in the expression for D can

. be considered separately, with the total diffracted field being the

linear sum of the wuaves diffracted by each "grating." The compu-

et s e - i sl e o e 1t e
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tation of the amplitudes of the diffracted wvaves is considered in Chap-
ter Four. In this chapter, general expressions for computing the
¢irection and phase of each wvave diffracted by a typical periodicity
ef D are derived for arbitrary plane wave {llumination, in terms of
the initiel expcoing wvaves which generated that periodicity. These
expressions are then used to predict a reconstruction of the original
vavefronts (virtual {mage) when the illumination beam is the reference
bean.

The analysis is then extended to the case of the r~flection
hologram. The reconstruction is described in terms of Bragg reflec-
tion from the interference planes within the emulsion layer, as given
in the expression for the grain density D. The reconstruction of the
original wavefronts (virtual image) is then analyzed and finally, a

comparison is made of the reflection and transmiasion holograms.

1.2 Recording Process

~ In this section we shall consider the specification of the
relevant characteristics of the developed film emulsion layer in terms
of the exposing fieid. The exposing field in the vicinity of the
rilm plate is written in a general form, with no consideration being
given to the problem of relating the field at the film plate to the

scurces wvhich generated the field.

1.2.)1 Exposing Field

The field which exists in the region of the film plate during

exposure of the hologram is taken to be of the form of a sum Of vell-

o o e —— - A o 1 . -
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defined, regular waves. Plane waves or spherinal waves would be
examples of such waves, but in general any wave whose wavefronts are
sufficiently smooth, such that they can be apvroximated (locally) by
a plane wave. satlsfies the conditions being imposed here. Tt will
be assumed that the source used is monochromatic end that the various
waves add coherently in the region of spece occupied by the film
plate. Thus, using complex nctation, the field in the region where

the film plate is to be placed is written in the form
ik .r+0)
E-Znn e PR et (1.1)

In the above expression, En is & real vector, Qn is a real con-

stant, and the propagation vector En is given by
k =2re ) (1.5)
A

Both En and En may be functions of r, but are assumed to be
sufficiently slowly varying such that the wavefronts msy be con-
sidered as (locally) planes®.

In most cases of practical interest {ghost imaging being an
exception) one of the well-defined wavefronts in the sum in equation
1.4 has a greater amplitude than the rest and has a direction of
propagation significantly different than those of the othe: terms

in the sum. This wave is commonly referred tc as the reference beam.

#See section 1.3.2 for a more complete discussion of this point.
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It will be convenient to write the term correspording tc the ref-

ence beam zaparately, thus

- - Y] -
ik .r 1{k .r+9)
2=2 . o gmlut +Zzn e 0 B’ ~dwt . {1.8)

nwl

1.2.2 Recording Media

The characteristice of the developed film plate, or hologram,
vhich was exposed to the field given by equation 1.6, dependis on the
nature of the film and development process, snd upon the field within
the emulsion layer during exposure of the plate, The field within
the emuleion layer will he of the same form as equation 1.6 but the
propagation vectors will have a different direction (and magnitude)
due to refraction at the emulsion-sir interface. In addition, the

vectors Rn will be different due to reflection losses at tne inter-

face. In the analysis presented here any attenuation or scattering .

that may take place within the emulsion layer during exposure will be
neglected. No notational changes will be made to differentiate
between the fields within and without the emulsion, the meaning being
clear from the text.

The characteristic of the ueveloped film emulsion which is of
interest here is D, the volume density of gizins within the emulsior
layer. In the case of ph>tographic smulsions utilizing silver hulides
within a gelatin matrix, the grains referred to are umall metallic

silver particles of rether complex shape. 1f the emulrizn J3 bleached
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during processing, then these metali.c silver particles are replaced
by a transparent silver compound having an index of refraction dif.

ferent than that of the surrounding gelatin matrix. Tn this case the
gratias referred to would be these transparent silver compounds, The
basic property of these grains which {8 of interest is that they pos.

sess cither an index of refraction or conductivity which {e different

from that of the uniform gelatin matrix of the emulsion layer, and
thus ihey aci as scatterers of rediation when the hologram ies illu-
minated. The details of the chemical processes which take place with-
in the emulsion luyer are discussed at lerngth in several excellent
references on photographic chemistry (15,16).

Photographic film is sensitive toc the total electiric field,
rather than to the pover density or megnetic fileld. This is a sig-
wificant factor when the exposing field is of the form of an inter-

yerence pattern generated by the ccherent superposition of two or more

vavegzgggagfsrdiscueaedraore fully in Appendix I.
The grain density D is expressed in terms of the square of
the magnitude of the tctal electric field that existed within the

emulsion volume during exposure of tiie film plate. 7That is

nsco+c1mf+cﬂ+---. (1.7)

where Co’ Cl, C?’ --~ are constants which depend on exposure time,
film churacteristics, processing procedures, and the wavelength of

the monochromatic ¢xposing {ield. The quan“ity !Ef is the square




ik

of the magrnitude of the exposing electric field and is given by

, o - BB (1.8)

[ R A S )

where £ is given by equation 1.4. It is s straightforward computa-
tion to express the grain density D in terms of the initial ex-

posing field given by equation 1.6 using equations 1.7 and 1.8.

S et e R S - w—— s

These computations are carried out in detail in Appendix II and the

results are given below., It is found that D can be written in the

form
D=C_ + clzﬁ + ceslo‘ + (2c11-:° + hcaez) (L:. b, coa[(io-in)~;-¢n]
|
|
+ (cl . zcaeﬁ) ; Con cos[(in-in)‘mn-%] .
i /
* 2021"5 ; bnbn cos[(in-im)';*ﬂn-ﬁm] '

20

. 2, ;; b b cosl(2k -E —&_)F-9 -9 ]
e

" e

v ueE n;q 0,0, cosl (B -E 4k £ ) 70,99, ]

ik -k +k -k ).r 1(9 -¢ +9 -9 ) .
+C2 Z c C e BRPA e S
nsmnpaqmpq

+ higher order terms . (1.9)




may be enbanced. Urbach and Meier (19) have produced holograms
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The quantities bn and Cmn are defined by

b = ] E 'g (‘109‘)
n o' n
s
and
"™ En-Em . (1.9v)

In addition to the presence of "grains" distributed through-
out the sensitive portion of the volume of the recording media,
there muay also occur a variatica in thickness of the recording media.
This kas been observed by Rigler (17) for Kodak type 649-f and type
So-2h3 film plates, Rigler reported that reconstructions in re-
flection could be obtained from such film plates when they were
coated with aluminum., Altman (18) discusses relief images on type

649-f plates in more detail and mentions ways in which such images

using a "greinless" recording media, where a 'phase image" is pro-
duced by electrostatically induced deformations of a dielectric
surface. It is thus clear that in certain cases the variations in
thickness of the recording media aay be the significant factor. 1In
other cases, however, such as when photochromic glass (20) is used
as the recording media, the variations in thickness will be negli-
gible or non-existent. 1In the analysis presented here any varia-
tions in the thickness of the recording media will be neglected.
This is clearly a good approximation for the case where photochromic

glass is the recording medium and appears to be a reascnable spproxi=-

!
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mation for type 6L9-f £ilm (17).

1.3 Reconstruction with Transmission Type Holograms

In the reconstruction process the developed hologram plate
is {lluminated with some form of electromagnetic vave, usually the
rafavanse bean or aome wave of similar charasteristics. The problem
vhich will be considered nov will be the computation of those prop-
erties of the diffracted field which can be computed from a knovw-
ledge of the illumination wave and of the hologram film plate as
described by the quantity D given by equation 1.9. It is noted
that D, the volume density of metallic silver grains within the
gelatin matrix of the film emulsion, is not a complete description
of the diffracting structure, the film emulsion layer. No attempt
has been made to describe the characteristics of the individual
grains, such as their size, shape, orientation, etc. Thus it should

be expected that only certain characteristics cf the diffracted

field can be computed rrﬁ;g;iknovledge of D ai;;;j
Examination of the expression for D shows that the film
emulsion layer is a periodic structure, and that these periodicities
are specified in the expression for D glven by equation 1.9. A
knowledge of these periodicities allows the computation of the di-
rections of the various diffracted wvaves, as well as their phases.
A knowledge of the pericdicities slone, however, may not be suf-
ficient to provide for the computation of amplitudes, and thus the
distribution of pover among the diffracted waves. The situation

is analogous to the problem of computing the radistion pattern of

.-
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an untenna array, vhere the location of each antenna is known but
the individual characteristica of each antenns are unknown. Ihe
array factor can be computed from the perfiodicity but the radia-
tion pattern of the individual antennas remains unknown. In the
case under consideration here, we find that a great deal of infor-
mation can be obtained regarding the amplitudes of the difrracted
waves from a knowledge of the periodicities alone. This is dis-

cussed further in Chapter Four.

1.3.1 Linearity Hypothesis - Neglect of Multiple Scattering
We shall assume that the field scattered by each grain

{metallic silver grain for unbleached gratings, dielectric grain
for bleached gratings) is essentiaslly independent of the presence
of the other grains within the gelatin matrix of the film emulsion

layer (i.e., ve neglect multiple scattering). That is, we assume

— —————that the field scattered by any given grain is dependent primarily =

on the illumination field and not to any great extent on the field
scattered by the other grains. This would clearly be the case if
the amplitude of each scattered wave is small and if the grains are
reasonably far apart, and if the emulsion layer is sufficiently
thin.

The total scattered field is then Just the linear sum of the
individual wavefronts scattered by each grain within the emulsion
layer., It makes no difference how the terms are grouped in the sum,
provided each vavefront is counted on.e and only once. A convenient

vay to group terms is to consider all the grains associated with a

PR — R
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particular periodicity ters in equation 1.9. The vaves scattered
by these particular grains vwill add in phase in certain directions,
resulting io the "diffracted vaves" which are produced by that
periodicity. The calculation of these "diffracted vaves" from a
given periodicity, neglecting the presence of all other periocd-
icities, is ween to be a logical extension of the stipulation that
it is valid to treat the field scattered Ly each grain independentiy
of all others.

The assumption is made that the amplitudes of the waves
diffracted by each periodicity are proporticnal to the coefficient

of the corresponding periodicity term in equation 1.9, and this is

. marely ¢ statement that in effect says that doubling the anumber of

grains contributing to the diffracted wave doubles the amplitude
of the wvave, since the individual scattered fields are summed co-

herently.

T - Au3.2 Hature of s Particular Periodicity - Restrictions on the

Exposing and Illumination Pields
It is recalled that the propagation vectors En in equation

1.6 are not necessarily coustants, but vere assumed to be slowly
varying in the region where the film plate was to be located. It
is thus apparent that the periodicity asscciated with each cosine
inte. ference term in equation 1.9 is in general s function of posi-
tion over the film plate. The stipulation that the ﬁn vary slovly
is defined by requiring that this variation be sufficiently slow

such that it is valid to compute the directions and phases of the




i |

19

diffracted wvaves assuming the perfodicity is (locally) constaent.
A similar restriction is placed on the {llumination wave, namely
that it behaves locally as a piane wave, or in i{he more general

cage, a8 & sux of such wvaves.

It is thus clear that what is required is the genersl sclu-
tion of the problem of computing the direction anc phase of the
vaves diffracted by a diffruction grating which was made by renord-
ing the interference pattern of two plane waves and which ls il=
luminated with another plane wave, Consideration of this problem
shows that it is the periodicity in the plane of the emulsior-uair
interface that determines the diractions of the diffracted wives
(along with, of course, the direction of the iiiuminetion wave, on
the air side of the interface)., Physicelly, this can be explained
by & simple considerution of the iaplications «f the assumption
that multiple scattering can te neglected. If we consider the
ation which lie within tne infinitesimal layer between z' and
z' 4 dz' (2' defined normal to the emulsion-air interface), then
it is clear that the directions in which the waves scattered by
these grains add in phase are the same ns for those grains that
lie in the z' = 0 plane. Whether or not the waves scattered from
grains within the two "planes” add in phase is a separate question,
one which is dealt with in Chapter Four.

The periodicity in the plane of the emulsion-air interface

(z* = 0) is specified by the fields that existed on either side of
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the faterface during exposure of the film plate. This is e con-
sequance of the fact that the interference planes must zatch up at

the interface in order to satisfy boundary conditions.

i.3.3 Interference Pattern of Two Plane Waves
In this section ve shall compute the orientation and spacing 1

of the intersection of the planes of maximum electric field in an

interference pattern (produced by two plane vaves) with the ¢' = 0O

plane (plane of the emulsion-air interface). Thus, ve consider the

non-lccalized interference pattern generated by the two plane waves

| UE T o 8) i

El = Eo e (1.10)
and
|
f
i(k,'r + ?,) {ut
T \*‘*Ea\.ﬁéif\zi‘f 7e\- - . 0 {}. oll} - T — — %
What is of interest is the interference term in E:B® yhere
Ea El + 22 .
It is readily seen that
2 7 :
B-Eva 2 + 2E§ cosl (K, = E,)-F + 8, - 8, . (1.12)
The interference pattern is characterited by loci of pointe of .
maxipum E'E%which are a set of parallel planes defined by
u?l - §2)~r +9 -9,=2m (1.13)
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where M {8 an {nteger. The lines of intersection of these planes
with the plane of the emulsion murfacs, the 2’ » 0 plane, are the

loci of points given by equation 1.13 with
re Ex,x’ + Ey,y' . (1.14)

[ " ] ' [ y '
Letting 1), mi, n; be the direction cosines of El and ), m), n}
bve the direction cosines of iz’ with regpest to the x', y', 2°
coordinate system, the loci of the lines of intersection in the

2' = 0 plane is given by
?_'. (l’ ‘0) t 2n ' l) '
: 1= 8y xt e = (m] -m3) y' + @, -0, =2 . (1.15)
) °

These lines make an angle ¢ with the x' axis given by

We rball find it convenient to define the xyz coordinate system by
a rotation of ¢ about the 2z' axis (see Appendix III for the
coordinate transformations and for the transformation equations for

the direction cosines). In this coordinate system

L, =, (1.17)

and thus, in the 2z = O plane, equation 1.15 becomes

an !
:: (ml - n2) y ¢ ¢1 - ¢2 = 2nM . (1.18)
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The periodicity D, or spacing of the intersection lines in the

1 = O plane is seen from equation 1.18 to be given by

» A
0

) d -‘n2 v I (1.19)

This displacement & of thesé lines, defined by setting M = O

in equation 1.18, is given vy

4]

6= 5 lnl - ne)

. (1.20)

1.3.4 QGeneralized Grating Equations
Equations 1.16, 1.19, and 1.20 determine the orientation,

spacing, and displacement of the lines of intersection of the planes
of maximum intensity with the emulsion surface plane. The problem

is nov one of computing the direction and phase of the diffracted

waves vhen this periodic structure is illuminated by a plane wvave

— T ~of the form

i i(k,r+9,)
] B ek e O 1,
- [+]

~fwt

where Ei = 2% 31 and A is not necessarily equal to A . The
X

; directions Ed of the diffracted wvaves are determined by the re-
quirement that the "elementary" waves scattered by each grain in the
periodic structure add in phase. This condition can be stated

gecmetrically in terms of the path lengths between two planes, A and
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B, defined by
e r=c (1.22)
and
Ed-P = c, . {1.23)

The constant ¢ is taken to be negative so that plane A is on

1
the incident side of the diffracting structure, vhile ¢ is

2
taken as positive so that plane B is on the transmitted side of the
structure. We are interested in L, which is the path length
Vetween the planes A and B, going from plane A to a point Po along

Ei' and then from P to the plane B aloag e we see that,

4
if Fo is the position vector of P .

L=-c, + roce, to, - T ce, (1.2k)

or, taking Po to lie in the z = 0 plane,
L= (l.i - Ld) x, + (mi - md) Yoty - Cy . (1.25)

We now impose two conditions on L to determine the allowed
directions of ;d . The first of the two conditicas is that L be
independent of x; . This assures that there is p- net phase shift
as ve move along a grating line. From equation 1.25 ve see that

thie requires that

$
o

B O
&
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2L

= f . {1.26)

The gsecond of the two conditi . » is that I, change by : intenral
number of wavelengths K& as Yo changes by d, cvhe periodicity of
the recurded interference pattern in the 2 = 0 plane. From eguaiion

1.25 ve see that this requires that

(md - mi) = %% (1.27)

or, using equation 1.19, wve see that

(my -m) = %A lnl - m2| (1.28)
)

The 2z direction cosine of ;d is determined from the condition that
A i + m:‘;if, =1 and the stipulation that we are considering trans-

mitted waves, vhich means that n

a will have the same sign as o .
Equations 1.26 and 1.28 thus specify the direction cosines

¢f the diffracted waves in terms of the direction cosines of the

illumination wave and the two initial exposing waves. The x direc-

tion cosines of the initial exposing waves enter implicitly through the

definition of the x,y,z coordinate system. The corresponding equa-
tions in the x', y', 2' coordinate system are found by applying the

transformation equations given in Appendix III:

! = o -x-i—x- - & to ! 2 (] ]
it T fn o= A [(12 11) gin® ¢ + (ml-nz) sin ¢ cos ¢] (1.29)




T T Iy L < L Lo g ety

25

and

mé—ni » %% cos ¢ = %i [(lé-zi) sin ¢ cos ¢ + (ni-né) col2 ¢ . (1.%0)

Equations 1.26, 1.28, 1.29 and 1.30 are essentially the same as those
used by Offner (14) 1in his work on rey tracing in holograpny. Offner
references the work of Toraldu di Franci (21) who preserts these results
without reference or derivation.

The phase ﬂd of the diffracted wave under consideration is
found by requiring that the interference pattern generated by the trans-
mitted portion of the illumination wave and the diffracted wave "match
up" with the interference pattern recorded on the film plate, in the
z = 0 plane, The intersection lines of the illumination interference

pattern and the z = 0 plane are given by

' 2% 2 - Y PP
R ‘441Aljigmfla)gxgtmif4Iq4-—naégy444¢1—-—¢378721M . {3.31)
Recalling that li = zd s the spacing of these linezs di is given by
A
a = . (1.32)
i m, - my

Using the value of Imi -nm

dl given by equation 1.28, with N = 3] |

it is seen that

di -W (1.33)
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and hence is equal to the periodicity of the recorded interference
puttern. Ve specify ’d by requiring that thae loci of minimum field
intensity coincide with the loci of maximum grain density in the

z=0 plane. Thus we 3et y = § and M e 1/2 in sguation .31, and

solve for ’d .  We obtain

A, (my - m,)
Od'ﬂi*‘fm(ﬂz-ﬂl) - . (1.34)

Now from equation 1.28 we see that

A {(ma, -m,)
4 i
» Ta, - m,l © N (1.35)

wvhere N 18 an integer. Thus, we can write equation 1.34 in the form

where M is an integer. We use M rather than N Dbecause of the
ambiguity in sign due to the fact that ve have the absolute magnitude

cf m,-m, in equation 1.35.

1.3.5 Interpretation of the Terms in the Grain L~nsity Equation
Let us consider the expression for the grain density D

ziven by equation 1.9. According to the theory presented here, the
field diffracted by this composite periodic structure is found by

summing the fields diffracted by each periodicity, i.e., by the grains

S o o N A T T ) B
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essocisted with each interference term in equation 1.9. In actuality
only s portion of these terme is of interest and it willi be possible
tc ighore most of the higher order terms. A discussion of the signifi-
cance of the varicus terms in equation 1.9 is thus of interest at this

time.
Hovever, belfore doing this, it is useful to show that {llum-

inetion of a particular periodicity with one of the two original waves
that formed it ylelds a diffracted wave having the seme direction and
phaese a8 that of the other original wave, Thus, let us consider a

periodicity term of the form

cos((k, - EJ)-i +9 -9, (1.37)
and let the illumination wave be given by

- i(Ei.; + ¢1-mt)
E, = E e . (1.38)

Then, in the xyz coordinste system defined by equation 1.16 with

1=4i, 2= ), it follows from equations 1.17 and 1.26 that
8, " zJ . (1.39)

Application of equation 1.28 yields

m; = m, + Nln1 -m

s J| (1.40)

and since N can assume the values $1, we see that one of the first
vrler diffracted wvaves has
By = 8, ] {1.41)

The phase of this wave is found from equation 1.34 and is given by

t
I
i o e
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¢d.'3 -y . (1-}‘2)

Thus, {t is clear from equatiom 1.39, 1.4l and 1.k2 that one of the
two first-order Alffracted waves has the sase direciion and pliase
(ex~ept for the constant factor of -x ) as that of one of the two
original exposing wvaves, vhen we illuminate with the other original
exposing wvave.

Returning to eqwation 1.9, the constant terms
Co + ClEi +* 023: + ... will constitute a bias, vhich is required, of
course, as it is physically meaningless to have a negative density, and

the various cosine interference terms assume negative values. The terms
(20,E, + UC,ED) E b, cos[(E -k )F - 9] (1.43)

give rise to tliren.l and virtual images, which 9‘23*«.113 vhat is of

interest in the reconstruction process. The real image is associated
wvith one of the first-order diffracted beams for each elemental
periodicity in equation 1.43, vﬁile the virtual image is associated
with the other first order. Because of the sinuscidal variation of
density of each of the periodicities, there are no second-order
diffracted vaves associated with each of the periodicities,* and thus
N in equation 1.28 has allovable values of only -1, O and +1.

The "second order" real and virtual imsges which are observed
are produced by the first-order waves diffracted by the periodicities

associated with the terms

¥ This Is discussed In Appendix VI.

N

[F—
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2c25§ g b: con[?(ﬁo - En)-E - 2¢n] {1.44)

The second order images thus arise because the film is aot linear in
E.B® | which will in general result in the coerficients C,, Cav oo
veing non-tero. The terms

(¢, + 26,82 L ey cosl(By - By)-F ¢+ 9, - 9]

s20,B ] vy cosl(E -E)F+0 -0] (1.45)
n,m
are of interest in "ghost imaging," and will be dimscussed in detail in
Chapter Three.
The remaining higher ocrder terms contribute little of interest
and can usually be neglected due to the small size of their coefficients
* and usually unfavorable illumination conditions.®* Thus, the diffracted

associated with the terms given in 1.43, 1.4k and 1.45. Each of these

terms is of the form

| coefficient x coc[(i1 - 52)-§ + 01 - ¢2]

By unfavorable illumination conditions we mean the case vhere the
direction of the illuminstion wave is snch that the waves scattered
M the grains associated with the psrtic ‘lar periodicity under con-
sideration do not add in phase when the entire emulsion volume is
taken into sccount, with the result that the amplitudes of the dir-
fracted vaves are quite small. This is discussed in detail in

. Chapter Four,
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and thus equations 1,36, 1.38 and 1.4k cen be umed to compute the

direction and phase of the wuves diffracted by esch periodicity.

1.3.6 Genersl Illumination

It vas shown in the previous section that the terms in
equation 1.9 for the grain density D vhich are of interest can be

written in the fora

Dea + ] 4

L 3 col[(ﬁi - EJ)'F +é - 'J] . (1.46)

If the hologram is illuminated by a vave of the form {(which

satisfies the restrictions mentioned in section 1.3.2)

. . Ak rep)
=F e & ) -lut
i io i e

then according to the analysis presented here, the diffracted fleld will

be of the form

i(k

= 13:‘; * ) gt
ridl didl e e

E, = ) . (1.48)
1,5,8

The propagation vectors EiJl are determined by applying equations
1.26 and 1.28, vhile the phase factors '1Jl are found from either
equation 1.34 or 1.36. The diffracted vaves as given by equation 1.8

are taken to be proportional to the coefficient of the corresponding

‘i
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periodicity term diJ + &8 was discussed in Bection 1.3.1. The resl

vectors F sceount for the amplitudes and polarigations of the

1IN
diffructed vaves. A rigorous computstion of these factors requires
the solution of the electromagnetic boundary value problem of the
system. Thia, of course, requires more information about the emulsion
layer than is given by the grain density D . The problem of the
rigcrous computation of ;iél vill not be cconsidered in this thesis,
but certain aspects of computing the amplitudes of the diffracted
waves will be considered in Chapter Four.
In the more general case the f)lumination field may be a sum
of terms such as given by 1.47. In this case the diffracted field
would be the sum of fields given by 1.48, one such field for esch
{llumination wavefront. This assumes that the field that is scattered
by each grain within the emulsion layer when it is illuminated by &
number of separate wavefronts is the linear sum of the fields that would

be scattered by the grain for each illumination wvave taken separately.

1.3.7 Reconstruction of the Original Fields ‘Virtual ;g;ge)

In this section we shall consider the case vhere the illumina-
tion beam Ei is identical to the reference beam that was used in ex-
posing the film plate. We saw in Section 1.3.° that illumination of s
particular periodicity with one of the original exposing vaves yields
the other original exposing vave as one of the two first order diffracted
vaves. Thus the grains associated vith the periocdicity terms given by

equation 1.43 give rise to a reconstruction of the signal beam vhen the




e . Dor o o ———— 055 sy 4

32

{llumination vave is the reference beam. In actuslity, the reconstruc=-
ted field will be of the form
((K,-r+9, -9 - ut)
J J
L - § P, (20,E “9253)33 .
+ zero order terms + real image terms + ghost image terms

+ second order terms + higher order terms (1.49)

Comparing the diffracted field as given by equation 1.49 with the field

that existed at the film plate during exposure of the hologram (equation

1.6), it is seen that except for the unimportant constant phase factor

of = u, the vaves given by the sum in equation 1.k9 have the same

direction and phase as those of the imitial exposing field. Thus,

except for possible questions regarding the ampiitudes of the diffracted .

vaves, one could say that equation 1.49 predicts the reconstruction of

the original exposing wavefronts.

1.h Reflection or "White Light" Hol

In this section we shall consider reflection holograms. It

will be seen that they can be treated quite adequately within the frame-
work of the analysis presented in the preceding sections. The analysis
is essentially the same until ve compute the direction and phase of the
diffracted waves, at vhich point a different method of adding the scat~

tered flelds is used. i
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1.4.1 Introduction
3 The distinotion betveen reflection and transmission holograms

is made with regard to vhether the reconstructed rields are produced on
3 the same side {refiection) or on ths opposite side {transmission) of

the film plate with respect to the 1llumination vave, In the case of
the transmission holograms, it was implicitly sssumed that the reference
beam and signal beam vere incident on the film plate from the same side
(6, < 90° and @, < 90° in Pigure 1.1a.) In the case of the reflection
hologram, however, the reference beam is brought in from the other side
(er > 90° 4n Figure 1.la.) When the {llumination is done using the
reference beam, the reconstructed signal beam {virtusl image) is formed
in transmission ror the transmission hologram in reflection for the
reflection hologram (Figure l.1b,c.)

Reflection holograms were first !‘nvestigated by Denisyuk (10,

i 11), who described the recording process in terms of the recording of

e et s e e Y O AN m
o i i

F————-— - —the intensity distribution in the standing wave interference pattern |

? formed by the reference beam and the light scattered by the object, In
the reconstruction process, Denisyuk described the reflected field in
terms of the waves reflected from the interference planes within Lhe
emulsion volume. He noted that the reflection hologram should act ae :n
interference filter, reflecting only those wavelengths which lie in a nar-

row band about the wavelength used in exposing the plate.® This effect has

® Except for emulsion shrinkage effects, which shift this wvavelength
. band. This is discussed further in Section 5.5.2.
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given rise to the use of the term, ''vhite light hologran" for reflection
holograme, due to the fact that a reconstruction can be obtalned vhen
the hologram is iliuminated with white light.

Denisyuk, who was working with non-laser sources, used the
trensmitted portion of the refcrince heam to {lluminate the object.
The object was placed quite close to the plate in order to keep path
length differences small., With the advent of the gas laser with its
long coherence length, more efficient and elaborate experimental setups
became practical, Stroke and Labryie (22) produced reflection holo-
grams (using e laser &8 & source) which could be viewed in reflection
with illimination prouvided by a flashlight or the sun. They described
the reconstruction in terms of Bragg reflection from the grating-like
stratifications within the emulsion layer. Lin et al (23) extended

. the experimental techniques to the use of two different wavelength

structions vhen viewed using white light. Other work in the area of
reflection holograms has been reported by Upatnieks et al (24) end

Stroke and Lech (25).

1.4.2 Recording Process

The description of the recording process presented in

section 1.2 is sufficiently broad in scope that we may treat the csase
; of reflection holograms without any modifications. Indeed, it is re-
‘ called that in section 1.2 there wvere no assumptions made with respect
to the relative directions of arrival of the signal and reference beam

vavefronts. Thus the formulation of the exposing fields as given by
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equation 1.5 is adeguate for application tu the case of reflection
holcgrams. The same restrictions that were placed on the nature of
tne individual waves which are represented by the terms in equation
1.6 are retained here, and thus the grain density of the developed re-
tlection hologram film plate ie given by equation 1.9. As before, we
neglect any variations in thickness of the emulsion layer and con-

sider both surfaces to be planes.

1.4.2 Linearity Hypothesis

The problem under consideration now is the determination of

the direction and phase of the reflected fields that are prcduced when
the -eflection hologram is illuminated. The saxme assumptione that were
made in section 1.3.1 are mede here, namely that multiple scattering
cen be neglected. Thus, as was discussed in section 1.3.1, the field

scattered by the grains associated with each basic periodicity within

tered by each of the pericdicities as specified by equation 1.SG.

1.k.4 Standing Wave Interference Pattern of Two Plane Waves

What is of interest is the computation of the direction and
phase of the fields scattered by the grains associated with a particu-
lar periodicity term in equation 1.9. It is recalled that the prooa-
gation vectors of the waves which gave rise to ihese interference
terms were not necessarily constants, and hence the "periodicity"

varies as a function of position throughout the emulsion. As before,
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ve will assume that the spatial v riation of the propagation vectors

s S o ot e

wvas sufficiently slow such that + may regard the periodicities as
{locally) constant. The proble: i; then reduced tc determining the
fieid zcrttered by the grains ¢ ocisted with an interference pattern
generated by tvo plane waves. This i3 the spproach that was used in
the case of the transmission hologram, only in this case the scattered

waves will be added in a different manner and hence it will be con-

venient to use a different coordinate system than the one that was
used in section 1.3.3. In addition, we will wish to make the compu-
tations with respect to the fields within the emulsion layer.

Thus, let El and E2 be two plane waves which existed in

the emulsion layer during exposure of the hologram, where

i(k.'r +0.)
E =B e 1 1 (1.50)

T mdfﬁ T T T T

i(k,-r +2,)
= 2 2
, =E e X (1.51)

As before, we are interested in the interference term in E.E®,

vhere E = El + Ee and

{ E'Ee = 2E§ + 2Ei cos[(il - Ez)'i + ¢l - ¢2] . (1.52)

The interference pattern within the emulsion layer is characterized

by the louci of points of maximum grain density, wnich are parallel
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planes a distance d' apart, and specified by
(El - E2) Teg -9, womM (1.53)

where M is an inbeger., 17 is convenient to carry out the calcula-
tions in a coordinate system vhere the interference planes are perpen-
dicular to the z" =xis. If the x', y', z' system is our standard
reference coordinate system, then we define the x", y", 2" coordinate
system by two coordinate rotations. First wve rotate about the =z'

axis by an angle ¢ (given by equation 1.16), to obtain the «xyz
coci'dinate system. In this coordinate system, equation 1.53 is of the

form

(ml - ma) v+ (n1 - n2) z + 01 - ¢2 = 27M . (1.5b)

x axis, wvhere

m

8 = tan™) (ni}-l:-l) : (1.55)
1 2

In this coordinate system equation 1.53 is of the form

(n; - ng) 2"+ ¢1 - ’2 s 29M (1.56)

(the coordinate transformations and transformation equations for the
direction cosines mre given in Appendiy TYI.) The above equation
specifies the planes of maximum grain density within the emulsion

layer for the special case where the tvo exposing fields are plane
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waves. If they are not plane waves (51 and 22 being siovly varying

functions of position) then equations 1.16, 1.55, and 1.56 are
applied at the particular location of interest within the emulsion

layer with the appropriate values of El and ia . eing used.

1,4L.5 Br Reflection Condition

in this section we wish to determine the field scattered by
those grains vhich are associated with the periodicity defined by
equation 1.56 when the illumination field is a plane wave of the form
ik v +2)

ﬁr = Ero ¢ . (1.57)

Equation 1.57 specifies the illumination field within the emulsion
layer, after refraction at the emulsion-air interface.

77777 ___Each grain, of course, scatters s portionof the illumi-—— """~

nation wvave in essentially all directions. We are only interested in

the particular case where the waves scattered by the grains under

consideration add in phase in a particular direction. This will occur

if the wavelength and direction of the illumination wave are such that

Bragg reflection from the planes of constant grain density occurs.

The Bragg reflection condition can be simply stated in terms of the

spherical coordinate e; (of Er), the illumination wavelength ) ,

and the distance d' betveen planes of maximum grain density., It

is

Nlr
cos 9; =33 (1.58)
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where N 1is an integer. If 9: and Ar are such that the above

equation is satisfied, then the vaves scattered from the graing in the

planes z" = ¢ + MA' will add in phase in the direction id. vhose
% spherical coordinates mre
" "
03 = 4 (1.59)
and
" = - [1]
6y = v - 6 A (1.60)

vhere ¢ is a constant and M is an integer.

It is of interest to express d' in equation 1.58 in
terms of the spherical coordinates of the propagation vectors of the
two plane waves vhich generated the periodicity. It is straightfor-

ward to show that if

-1 Ae -
a = cos — (—=k, ‘k,) (1.61)
X 2172
w
then
A (1.62)
d' = 2 sin (a/2) )
Now, as a consequence of our choice of the x", y", ¢" coordinate
| system
o = o) (1.63)

1 2




and

1t (1]
) al +o; =1 . (1.6L)

It follows from equations 1.61, 1.63, and 1.6k that

sin (%0 = cos e; s ~ cos e; {1.65)

and hence, using equations 1.58, 1.62, and 1.65, the Bragg reflection

condition becomes

Nkr NAr
" ——— " - n R
cos O = ~=cos 6] = 5 cos 0, (1.66)
. Equation 1.66 expresses the conditions which are placed on the prop-

agation vector Er of the illumination wave in terms of the two

original illumination waves which generated the periodicity under con-

equation 1.9. (It should be noted that there is in general a dif-
ferent x", y", z" coordinate system associated with each period-
icity.)

It is of interest to determine if there is a particular
ir vhich will satisfy equation 1.66 for a significant number of
periodicity terms in equation 1.9. An examination of equation 1.9
shows that the terms which yield the virtual image in tranamission

all have the propagation vector io in common, and the interference

* terms are all of the form of the interference term in equation 1.52.




It follovs from equation 1.66 that if the i{llumination wave
is the same as either of the two original waves, then equation 1.66 is
satisried (with |N| = 1 ). Purthermore, it follows from equations
1.59, 1.60, 1.63 and 1,64 that {llumination by one of the two original
vaves yields the other as the reflected wave. The phase factor ’d
for the reflected wvave is specified by requiring that the planes of
minimum intensity in the interference pattern generated by the illumina-
tion beam and the reflected beam coincide with planes of maximum
grain density. For example, consider the intertérence term generated
by the reference beam and the Jth signal wave. The recorded inter-

ference pattern is, from eguation 1.56,

(ng - nS) " - ¢J = 2aM . (1.67)

When ve illuminate with the reference beam, the loci of points of

minimum electric field intensity im given by

(n) - u3) 2" - gy = 2n(M + ) (1.68)
and hence
g, = OJ - . (1.69)

Thus, except for the unimportant constant phase factor -x , the phase
of the reflected wave equals that of the other original illumination
vave, and hence wve can say that illumination of the periodicity by one
of the two waves vhich produced it ylelds a "reflected wave" whose

direction and phase equals that of the other wave.
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It thus follows that when we iliuminate the hologram with the

PR IV

reference beam, Bragg reflection will result in reflected waves vhose ' §
directions and phases are the same as those of the original signal

beam, and hence a reconstruction (virtual image) is produced.

1.5 Comparison of Transmission and Reflection Holograms

There are a number of fundamental differences between the two
types of holograms that warrant discussion here. First of all, while
the directions and phases of the "diffracted" or "reflected" fields are
determined by requiring that the individual scattered waves add in
phase, there i{s a basic difference in the way in which we "group terms" .
in summing these scattered waves. In the case of the transmission

hologram the directions of the diffracted waves (l.e., the directions i

E44“4447477AMAAEEAypiggugggiindividusl scattered waves add in phase) are determined
from the periodicities in the plane of the emulsion surface, and these
directions are expressed by what could be termed "generalized diffrac-
tion grating equations.” On the other hand, in the case of reflection
holograms, the individual acattered waves add in phase when the Bragg
reflection condition ie satisfied with respect to the planes of constunt

grain density within the emulsion layer.

It can be immediately seen that with respect to the determina-
tion of the directions of the "diffracted” or "reflected" waves, the
variation of grain density with depth is of primary importance in the
case of the reflection hologram, but of only secondary importance in

transmiseion holograms of the type considered here. Indeed, ve could
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ist the emulsion thickness approach zero in a transmission hologram a.d
still obtain & reconatruction, while this would result in the complete
disappearance of the reconstruction in the case of the reflection
hologram.

It was seeu in Section 1,3.4 that there vere two directions
in vhich the vaves scattered by the grains associated with a particular
periodicity of the transmission hologrem add in phase. This is
analogous to the two first orders produced by a diffraction grating,
and in the case of the transmission hologram, these two directions
correspond to the real and vi;tunl images. The situation is quite
different in the case of the refiection hologram, vhere, as was seen
in Section 1.4.5, there is only s single direction in which the

scattered waves from a particular periodicity add in phase. Thus, only

& single image is formed by a reflection hologram, and as was seen in

Section 1.4.5, wvhen the illumination vave is the reference beam, the

single image is the virtusl image. This does not, hovever, preclude
the formation of & resl imsge. Denisyuk (10,11) explains the condi-
tions placed on the exposing and illumination beams that must de
satisfied in order for the single reconstructed image to be real.
Perhaps the most strixing difference between the tvo types of
holograms is the difference in reconstructions for the case vwhen the
1llumination wave has a wide range of spectral components (the
geometrical characteristics being the same as that of the reference
beam). In the case of the transmission hologrem, each spectral compon-

ent ylelds diffracted vaves vhose directions are specified by equatious
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1.26 and 1.28. It is seen from equaticn 1.28 chat the directions are s
fudetior of A, and thus each wavelength will yield an imege displaced
some amount in angle with respect to the images produced by the other
spectral components in the illumination beam. The and result is a
blurred image, the blurring becoming worse as the spectral range of the
illumination beam is increased.

The situation is quite different in the case of the reflection
hologram, as the Bragg reflection condition (equation 1.66) must be
satisfied in order to obtain any reconstruction. If the illumination
beam hes the geometrical characteristics of the reference beam but has
a range of gpectral components, only those wavelengths which satisfy
equation 1.66 will yield scattered waves which will add in phase, and

hence give a reconstruction. The other spectral compcnents do not pro-

_duce images and hence do not degrade the reconstructed image.— Thus,-one—— -

can illuminate a reflection hclogram with "white light" and still obtain
a reconstruction of reasonable quality.

There are a number of practical considerations that modify the
previous statements regarding reflection holograms. In practice, film
plates such as Kodak 649-f high resolution plates are used in making
either transmission or reflection holograms, and the emulsion layer is
typically 15u or less in thickness. in the case of the reflection
hologram this means that there will be only & limited number of inter-
ference planes contributing to the Bragg reflection phenomena, The
radistion pattern or "array factor" associated with each periodicity in

the reflection hologram is thus much less directive than in the case of
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the transmission hologram, vhere the periodicity is in the plane of the
emulsion surface and hence many more basic pericds are included in the
dirfracting structure. The result is that the reflection hologram will
yield a reconstruction over a band of wavelengths, this band being
narrover for thicker esulsions. In addition there is much less sensi-
tivity to the angle of incidence of the illumination wave. An addition-
al consideration is the fact that emulsion shrinkage may occur during
processing of the f£ilm plate, and this will result in the shifting of
the wavelength band for reconstruction of the reflection hologram to
shorter wavelengths., Experimental data as well as an analytical treat-
mrat of the wavelength sensitivity of reflection holograms can be

found in the works of Denisyuk (10,11) and Fleisher et al (27). Al-
though the authors of (27) don't specifically consider holograms,

their work is directly applicable and includes a vorthwhile amount of

1.6 _Summary and Discussion
The analytical description of the holographic process that

has been formulated in this chapter takes into account the three-
dimensional nature of the recording media by characterizing the emulsion
velume by the volume density of scettering particles, the grain density.
A general film response {8 allcwed for by expresaing the grain density
as a pover series in E'B¥, vhere B is the total electric field.

By expressing the exposing and illumination fields in the

form of a sum cf plane or quasi-plane vaves and neglecting multiple
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scattering we have been asble toc handle the problem of computing the
diffracted fields by using what could be termed a linear systems
approach. This invelves computing the waves diffracted by the grains
associated with each periodleity term in the expression for the grain
density, and then summing (coherently) these waves to obtain the total
diffracted field. The problem of computing the diffracted field is thus
reduced to solving variations of the same basic problem, that of com-
puting the direction, amplitude and phase of each of the two first-order
diffracted waves that are produced wher a "volume diffraction grating”
is illuniinated with a plane wave. We solve this problem for the
general case, considering the directions and phases in this chapter and
the amplitudes in Chapter Four (for transmission holograms only).

It should be noted that we have been dealing with the values

of the flelds in the immediate vicinity of the hologram plate and have

not considered the problem of relating the exposing and illumination
fields to the sources that generate them or the problem of computing the
dirrractgd field at some distant observation point. These prublems can
be dealt with by utilizing Fresnel-Kirchhoff diffraction theory (as
discussed {n Chapter Two) or perhaps by using some sort of geometrical
optics or raya tracing technique, as was done by Offner (1L).

In general we shall deal primarily with the fielda in the
vicinity of the hologram plate, except where we are considering a
specific problem where the field in some other region is of particular

interest, as is the case with Fourier transform holograms. We shall see

e i b e et

o
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that a knowledge of the field in the vicinity of the hologram plate ig
sufficient to provide the solutions of a number of problems which are

of interest.




2.2 Transmittance Approach

CHAPTER TWO

TRANSMITTANCE DESCRIPTION OF WAVEFRONT RECONSTRUCTION

2.1 Introduction b

In this chupter we shall consider the transmittance descrip-

tion of wavefront reconstruction as developed by Gabor (5). We will i

see that although the use of the concept of amplitude transmittance be-
comes questionable as the spatiaml frequencies involved become high
{i.e., when the emulsion must be regarded as "thick"), the analytical
formulation still remains valid. Furthermore, we will show that with
respect to computing the directions and phases of the diffracted waves
the transmittance approach and the approach formulated in Chapter One

are equivalent. We will then compare che two approaches. 4

The term "transmittance approach" as used here refers to a
particular formulation of the problem of determining the diffracted
field produced when the hologram is illuminated. The diffracted field
is to be specified in terms of the initial exposing fields, the film
characteristics, and the illumination field. The fields referred to
are specified in the immediate vicinity of the film plate, and the
problem of relating the expcsing fleld to the sources which generute
it and the problem of computing the diffracted field at some distant

observation point are considered as separate problems.

Sre

-~
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2.2.1 Analytical Formulation

The following formulation is due to Gabor {5) and has been
successfully used by many researchers to treat many different problems
in holography. Letting the z = 0 plaene coincide with the surface of
the film emulsion layer, the exposing field U s taken tc be of the

-iwt

forn (e suppressed)

de)=Uﬂxd)+UﬂxJ) {2.1)

wvhere U1 and U

the reference beam and signal beam respectively. It is convenient to

5 are complex scalar quantities which we identify as

write
iwl(x,y)
U lx,y) = A (x,y) e (2.2)
and
1w2(x,y)
Uy(x,y) = A(x,y) e (2.3)
where Al’ V. s A2 and wa are real functions.

In the recording process the amplitude transmittance 1 of
the developed film emulsion layer is taken as the quantity vhich
specifies the characteristics of the developed film plate which are of
interest. It is generally assumed that <t is real and can be found in
terms of the intensity UU* from the characteristic curve for the
film. Furthermore, if one assumes that the amplitudes of Ul and

U, (and the exposure time) are chosen 8o as to have the expcsure be in

2
the "linear" range of the characteristic curve, then the amplitude
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transmittance 1 can be expressed i1 the form

. e T2 P
T - bo + {(Uu*) T {

My
-~

where bo iz & constant and I' is the "gamma” of the fiim. It is
convenient to take I'= 2 &g this erimplifies the algebra. Thiz can be
Justified by noting that if we make the amplitude of the reference beam
much greater than that of the signal beam, (UU")”2 can be expanded
in = binomial series, the first order terms corresponding to the case

/2 = 1, That is, writing

r/z 2 2 , r/e
(uu*) = [Al + A5 ¢ 2hA, cos(wl - we)]
or
2
A 2A
(UU')’/Q = 2° {1+ 2, =2 coe (¢, - ¥ )]1-/2 (2.5)
1 2 A 1 2
A 1
1
and assuming A /A, << 1, we see
2
A TA
)2 ¥ 42 1+ =2 + =2 os (v, - v,)]
1 A2 A 1 2
1
or
(UU")”2 s A2 + A2 + PA A cos(y, = ¢,) (2.6)
1 o 1he 1 2 : :

Thus, taking T = 2 &and cuppressing the constant bo, the amplitude
transmittance of the hologram plate is of the form

v, - ¥.) =i, = ¥)
Ay e 2 l#AAEe N !

-
1 = A? + A; + A 1 (2.7)

1

i
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Thuy, by definftion, if we illuminate the hologram wi.h a vave U

the transmitted wave UT will be given by

UT S 1U3 . {c.8)
Writing
U = Ae O (2.9)

equation 2.8 becomes, using equation 2.7,

iy e, - by +¥,) 1y, - - v)
2”17 ¥ 2 71773
+ A e +A A A e

2 2 3
UT = (Al + A2) A3e
(2.10)
The first term is the zeroth order term, the second term is the virtual

image term and the third term is the real image term.

2.2.2 Variations with Depth

The cheice of the awpiilude transmittance as the quantity

7;5155 characterizes the developed film emuision layer implies that we

neglect or "average out" any veriations in the @ directions. This

is clearly a good approximation vhen the thickness of the exulsion
layer is ccnaiderably less than the pericd of the highest spatial
frequency component in UU% . However, it is rot e good approxixation
in those caces where high spatial frequencles are involved, such as with
the two-beam method (2) which is extensively used because it provides an
angular separaticn of the images. For example, the emulsion layer on
typical high resolution film plates used in holograsphy may be from 5

to 15 microns thick, and from equation 1.62 it is seen that with a
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wevelength of E}?HAU and ar angie of 79 between two plane waves the

period of the resulting ipterference patterr will be of the order of
. 9 micreng. One could go on and menticn cxauples where the intérfrécencse
fringe platies are inclined with respect to the 2 &sxis and where
avrraging over z  would "wash out” the interference pattern. In
such cases the strict interpretation of 1t in oquation 2.8 as the
actual amplitude transmittance would clearly rule out the validity of
this aspproach. However, it will be seen shorily that equation .8 is
valid even in such cases, btut the interpretation ¢f v must be dif-
ferent.,

This should not Le too surprising as It was seen in Chapter

One that the directions and phases cf the "diffracted” vaves are deter-
mined by the periodicity in the 2z = 0 plane. In the expression for
; T a8 given by equations 2.k or 2.7, it ic the fields in the z = 0O
: } - plane that are used, and it is precisely the fact that the varistiens - -
with 2z are not included that allows the use¢ of wvquation 2.8 in those

cases where the concept of smplitude transmittance bremks down.

2.2.3 Equivalence of “he Scattering ‘Theory Approach und t!e Truns-

mittance Approach

In this section we shull show that with respect to computing
the directions and phases of the diffracted waves the lransmittance
approach as given by equarions 2.7 and .8 {5 equivalent te the approach
given in Chapter One for transmigssion holograms. in purticuler ve shali
conslider the special case where Ul’ U, und Uj Are plone waves, nbd

2

ve shail show that for this case equations /.7 and 2.8 yleld the




~the z » 0 plane

gguntisng glven (n CThartey Ope Cor detorminiog the direction and phase
the 1iffrurted waysg,

Hence, 1et us tahe

i(kl'r + Q})

Uy = A (2.11)
(r.'r+0)
U, = Ae e € (2.12)
and
i(i3-:'— + ¢3)
u3 = Ae {2.13)

where Al‘ A?’ and A3 are cohetants.

It is convenient to express the quantities il';’ ie-? and Ea';

in the x,y,z coordinate aystem defined as in Section 1.3.3 (equation
1.16) so that the x direction cosines of El and Ez are equal

(the 2 = 0 plane coinciding vith the emulsion surface). Thus, in

El'; - %1 (llx + mly) (2.14)
o

G, F e 2 (ke my) (2.15)
Q

- = 2%

ka-r = = (13x + m3y} . {2.16)

let us consider the second term in equation 2.10, which {» the term
which correegponds to the virtual inage if Ul is identical as the

reference beam. It is clear that since wve have taken Ul. U?. and
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; U% Lo be piahe waves, the Jiffracted saves given by equation 0,10

1 -

wiil alio e plane waves, Thus tre fuctor . - ¥t vy will Ve
£

of the form {(in the & 2 O plape)

on I
o, - 4 - — )
b = ¥y ‘03 =3 (f.hx 4 mhy) s P, {¢.17}

Put Vi Y., and @B are specified by equations 2.1L, 2.1%, and .16,
O

hence (recalling ¢, = &)
[

1

2 2% on
. (lhx rmy) ¢ P = > (131 + m3y) .+ = (m: - ml) y * ﬁz - Gl + ¢3 '

[¢]

(2.18)

If this equatisn is to be valid for all values of x and y, the «x

|

s

|

i and y coefflcients must Ue wequal. That is

:

b

]

: 1,0k, {2.19)

; rd

E

77777 ,:md -

E mo-m =iz, o-m) {2.20)

L 3 A ¢ 1 -

1 Q
Now equatlons 2.19 and 2.20 dre identical to the equations derived in
Section 1.3.3 that specify the directions of the diffracted waves

E vhich occur when a particular periodicity is {lluminnted by m plane

E wave, That is, equation .19 is identical to equuticn 1.J6 mnd

I
equation 2.20 is identical vu equaticn 1.78 for t.e case 3| = |
{virtual image). Similar results are cobtair:d for the real image term

in equation 2.10, the only difference being s change of sign uf the

;
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right hand side of equation Z2.19 which correaspondi: to the case where

the opposite aign is taken in equation 1.38.

The phase factor ab ror the virtual image is found to Le

4, - ‘3 * %2 - 31 {z.¢17
while the phase factor @ for the recl image f{s found to be
¢-¢3-¢2+¢1 . {(z.22)

Except for the abrence of the cunstant factor -~s , equations ?.21
and £.22 are identical to eyustion 1.36. It was seen in Secticn

1.3.4 that the factor of ;u is & congequence cfrthe boundary con-
ditions requiring that the fntui' E riexa bé_n'ﬁihinﬂm in a region of
maximum grain density. We can put';his {n the cuﬁ:ar& of the trang-

mittance theory by noting that in Bection_1.3.h We ere ¢ealing'w1th B

Vnegative.” If we were tc makr & "positive” (assuming that the

spatial freguency is sufficiently low thatrit {s meaningful to speuk'
in ruch terms) tnen we would in effect shift the fringe patiern by .
1/2 period and tie factor of -7 would no longer be prasent.

We neve Luws Jdeawhetialed, for tne special case of piane
vaver, thet with respect vo comﬁuting the directions and phases of
the dif{fracted vaves, the transmittance approsch and the approach
descrited in Chapter Cne are equivelent, It-ia clear that this eguiv-
elence will also hold when the flelds are of the form of s sum of
plane or qunsi-plmde waves, or wher the fields can be expredoed as a

continuous distribution of such waves,
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Having demonstrated the egquivaience of the two approaches with
respect to the dirsctions and phuses of the diffracteas waves, it {s
logical to ask whether any such sguivelence exists with vespect to the
amplitudes of the diffracted waves. The forsulation of the analysis
as given In Chapter One was duhe o ns Lo take into account the entire
emulsion layer. Using this formulaticn, the problem of predicting the
reconstruction efficiency and the distribution of wmplitudes in the
diffracted waves will be denlt with in Thapter Four. 7The transmitisnce
approach, as outlined in Section 2.2.1, does not take into account the
entire emulsion layer, but instead :deals only with the fielde in the
z = Q plane. Thus, we would expect that the twe approaches should
yield different predictions wher the emulsion is “thick' (i.e., high
epatial frequencies, with periocd comparable to the emulsion thickness)
but should ugree in fhe limit &5 the ratioc of emuision thickness to
minimum fringe specing spproachés zero.

This can be gseen to be the cuse ag follows: In the scrtter-
ing theory approach the grain density ls taken tc be the quantity
which specifies the developed !'iim émulmioa layer. Any particular
diffracted wave {s identified as being the result of coherent acatter-
ing by a certain number of grains within the emulsion layer which are
agsociated with a particular periodicity term in equation 1.9, The
smplitude of thig diffracted wave is taken to be proportional to the
amplitude of the illumination wave and proportional %o the total number
of grainse N assoclated with the corresponaing periodicity term in

equativ- 1.9, Examination of the periodicity terms in equation 1.9
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vhich yield either the real or virtual images shows that N 1is prop-
ortional to the product of the amplitudes of the signai bean aud re-
ference beam. 1In terme of the example used in Lue i’rst part of this
gection (where the fields are given by equatiocs 2.1, 2.12 and 2.13),
this means that according to the scatteri-g theory spproach, the am-
plitude of the diffracted waves (real or virtual images) willrbc prop=
ortional to A1A2A3 s Juet as is predicted by the transmittance
approach, as can be seen from equetion 2.10. However, the constant

of proportionality for the real and virtual images is the same accord-
ing to the transmittance approach but may be different according £o
the scattering theory approach. In fact, this ",roportionality con--
stant" is not u constant at all, but a factor which is a function of
the illuminaticn wave geometry, emulsion characteristics, and otaer
factors as discussed in Chapter Four. It will be shown in Chapter Four

that this factor may differ by orders of magnitude between the real

end virtusl image, These differences uare due to the different con-—— — —— —— -

ditions fcr having the fields scattered by the grains in the different
planes z = constant add in phase. In the limiting case where the
epulsion thickness goes to zerc this effect clearly bscomes unimportant
and the two approaches yield the same result. The same conclusion is
reached in the case vhere the emulsicn thickness remains appreciable,
but where the spatial frequencies decrease to the poiut where the

ratio of emulsion thicknees to minimun frirge specing apyrroaches zero.
In this case angular separation of the twc images is sufficiently small

and the "width" of the orientaticn sensitivity curve (see Chapter Four)
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is gufficlently lerge that there is no appreciable difference in the

! amplitudes of the two images.

f
] 2.3 _Comparison of the Twc Approsches

As a basis of comparison of the twc apuroaches, we shall

[

consider the range of mepplicability of the two Approaches and the ease

i
|
l

? with which calc' ations can be made using them., The concept cf the
amplitude transmittance was rlearly Justified in the early work of
Gabor and cthers vhere the spetisl frequencies were low. The analytic:l
formulation of this approach has been shown to remain valid even for
high spatial frequencies, but we have seen in such & cuse that the
interpretation cf the quantity t {as given by equation 2.4 or 2.7)

as the amplitude transmittance may not Ye correct. Instead, we must

e view 1 as specifying the periodicities in the planc of the emulsion
’surfuce;

"~ In comparison, the formulastion given in Chapter One takes

into account the entire volume of the ewulsion layer, and allows, in

a very generel way, the treatment of both transmission and reflection
holograms. By considering the coherent scattering by the grains within
the emulsion layer we were able to show that the directions and phases
of the diffracted waves are specified by the periodicities within the

4 emulsion layer. In the case of the transmission hologram we saw that
the directions and phases of the diffracted waves are epecified by the

periodicities in the plane of the emulsion surface. This verifies in

physical terms the validity of the epplication of the transmittance
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approach in those cases involving high spatial frequencies,

In addition, the formulation given in Chapter One provides &
convenient bagsis for the investigation of the dependence of the recon-
struction efficiency on the film characteristics and processing pro-
cedures as well as for the determinastion of the relative amplitudes
of the diffracted waves. The two methods, as we have gseen above, yield
aimilar predicticns for the amplitudes of the diffracted waves when
the ratio of emulsion thickness to minimum fringe spacing is small.
Howvever, when this is oot the case, the approach of Chapter One is
clearly the better of the two methods. If the problem is not one of
computing the relative amplitudes of the waves in the two images, but
rather that of computing the relative amplitudes of the waves asso-
clated with one of the images (say the virtual image, with the illumi-
nation beam being the reference beam), then the transmittance approach
. _ may be satisfactory, as variations in the "proportionality constant"

between waves in the same image may be small,

We have scen that with respect to calculations involving the
directions and phases of the diffracted waves, the two methods are
equivalent. In the scattering thecory approach, the fields at the film
plate are assumed to be ip the form of a sum of quasi-plane vaves., The
diffracted field is then given as a sum of such waves, vhere the iirec-
tion and phase of each wave at each point of the film plate is computed
according Lo the formalism developed in Chapter One. In the trans-
mittance approach, on the other hand, the exposing and illumination

fields nre written in a very simple form (equations 2.2, 2.3 aad 2.9)
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and the diffracted field is found using the simple relationship given
by equation 2.8 or 2.10.

It is often the case, however, that part ¢f the over-all
problem is that of relating the expoasing fields to the sources which
generate them and coaputing the diffracted field at some distant ob-
servation point when the hologram is {lluminated. Then, depending on
the problem under consideration, one or the other of the two methods
pay be more useful. For example, consider the case where the exposing
fields consist of a well defined reference beam plus the light ascatter-
ed from the surface of a diffusely reflecting object. It would clearly
be quite difficult to specify Az(x,y) and we(x,y) in equation 2.3,
On the other hand, the scattered field could be reprecsented as arising
from a number of point sources distributed over the surface of the
object, and thus would be of the form of the field given by equation

1.k. The dlffracted field could then be chiuted in a straightfo}-

ward (but lengthy) manner for any ardbitrary illumination field which
can be put in the form of a sum ¢f quesi-plane waves.

In contrast, an example where the transmittance formulation
is most useful would be for the case where the exposing field consists
of the light diffracted by a two-dimensional transparency plus a plane
or spherical wave reference beam. Fresnel-Kirchhoff diffraction theory
could then be used Loth for specifying the exposing field at the film
plate and for computing the field at some observation point when the

hologram is illuminated. These calculations can be put in transform

language and discussed within the framework of communication theory (2).

o po— ey ot by
.
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Calculations of these types, using the transmittance formulation, have
formed the basis of the majority of hologram investigations thus far.
We shall have cccasion to use both apprceches in the following chapter,
Pinally, we note that what might prove to be the zmost useful
aspect of the approach developed ia Chapter One is that it allows us
to gain a ~,o0d deal of insight into the holographic proness by examine-
ing in detail a very simple type of hologram, the holographic diffrac-
tion grating, formed by recording an interference pattern vhich is

generated by two plane waves.

Cy
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f CHAPTER THREE

MULTIPLE WAVEPKRONT REFERENCE BEAM HOLOGRAPHY ~ OHOST IMAGING

3.1 Introduction

The concept of multiple reference beam holography or "ghost
imaging” as used here refers to the case where the reference beam is
no longer a sipple, well-defined vave (such as a plane or spuerical
wave), but instead consists of a discrete sum or continuous distri-
bution of such waves. In particular, thesc waves may arise from a
portion of the object itselfl.

The first investigation of such a case was made by P. J.

3 van Heerden who, in a paper developing the theory of the intensity
filter (12), predicted that vhen a planar Fourier transform hologram

(or "intensity filter") is illuminated witn a portion cf the original

field is obtained. 1In the optical system considered by van Heerden,

this reconstructed field is brought to a focus to form an image of the

original transparency, and this image was referred tc as a "ghost

image."

; The first experimental observation of such a "ghost image”
|

appears to have been made by Stroke et al (35), who were investigat-

L ing the effect of "extended" sources ¢p tiie resolution attwuinable in
b
| Fourier transform holography. This was followed shortly by a series

of experiments by Collier and Pennington (36,37), who verified van

Heerden's original prediction that a tranalation of the portion &f

i
!
z
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the oblect generating the "reference beam" during the iilumination
results in a corresponding translation of the ghost image, which re-
asins in register with the image of the object fragment. They also
presented experimental results showing the formation of & ghost image
with & diffusely illuminsted transperency as well as with a diffuaely
reflecting object. 1In the latter case, they cobserved that reposition~
ing of the holraram nlate was critical, and that things had *n re-
wain as they wvere during the exposure in order to obtain a recon-
struction of the "ghost image.”

In this chapter +e shall be interested in examining the
mechanism of the formation of the ghost image (i.e., a reconstruction
of the signal beam when & complicated re.'erence beam is used), both
from the point of view taken in Chapter uUne and from the poiat of
viev taken in Chapter Two. We shall examine the effect of errors in

repositioning of the hologram plate (the "translational sensitivity")

as vell as the background noise that arises when the reference beam ——

is no longer a single vavefront.

We shall begin by considering the case where the reference
bemis is of the form of a sum of plane or quasi-plane vaves, such as
would arise, for example, if the reference heam was generated by the
light from s diffusely reflected object. After computing the effect
of repositioning errors and background noise, we shall describe an
experiment in which the power in the reconstructed signal beanm is
measured as a function of repositioning error, or translation of the

hologram from its original positicn. The experimental results are
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then compared with the rewults obtained by applying the analysis pre-
sented here,

We shull then go on to congider ghost imaging vwith Fourier
transfora holograts, and ihvestigste the translaticnal seunsitivity
and background nolse both for plane rrave silumination (of the trans-

parency) and for diffuse illumination.

3.2 Holograms with Multiple Wavefront Reference Beams

In this section we shall consider the case where the ref-
erence beam 13 more complex than the simple single wvavefront reference

beem consldersd previously, #s is the case in "ghost imaging" or holo-

graphy with "extended sources”., We shall use the approach outlined in

Chapter One, namely where we treat the exposing fields as sums of

locally plane waves. This approach is in principle essentially that

used by van Heerden (13) in his treatment of ghost imaging in his paper

on information storage in three-dimensional media,g}hg7§§§597Q§[[g§ggqg o

vectors across the film plate.

We shall be concerned with the case where the illumiration
beam is the reference beam, and shall examine in detail the effects of
slight changes in the reference bzam {such as caused Ly an errc. n
repositioning the film plate). Furthermore, we will consider the nature
of the reconstructed fleld .virtual image) ¢4 examine "nolse" or
"distortion" terms which generally arise when & multiple wave reference

beam ig used. We shall treat this "background noise” both from the

point of view taken in Chapter One and from the "transmittance” point
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of viev, and will show that the results are equivalent, as is to be

expected.

3.2.1 Recording Process

We are now interested in the case Vhére the "reference beam”
is no longer s singie plane or spherical wave but is rather a sum of
such waves., The field at the film plate is 3till of the form of equa-~
tion 1.0, hu* =~ the first P terms are identified as the reference

beals and the last M-P terms as the signal beam., The field at the film
-jwt

plate is thus written in the form (e suppresged)
P i(k,.r+9,) M Uk 7+ 0 )
Ea J E, e Y 3. Ee ® 2L (3.1)
IHEE maPsl B

by equation 1.9 becomes

F P
DeC +C, ) 1 C, cosl(k-K )F+@ -2]
o 1 Jal ksl Jk b} ER 3 K
M M .
.0 ) Com cosl(En-Eu)~r +9 - 9,

n=P+l m=P+]

P M
cae, ]

cos{(k ~k )r+ g, -9
451 nePel Jon

€n 3= %
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¢ higher order terme {3.0

Since we will be illuminating the hologram with the reference beam {or
& beam very simiiar to it} wve shall he prim&rily interested in those
terms {n equation 3.2 which rorrespond o interference hetussn refars
ence beam waves and signal beum vaves, These terms-nrc théme includﬂﬁ'
in the third double swn in equation 3.2. The firat und second dﬁuble
surm in equation 3.2 correspond to interference between the various
reference BORL mwsve wou Lne VArisus Lignal Loasm wuvis, respectivuly;
We will assume that the geometry of the problem is such that the dlf-
fracted waves produced when these periocdicities are {lluminated with
the reference bewn are either separated in angle from the reconstructed
signal beam or else sre sufficiently vweak {(duv to unfavorable {1luminge
tion conditions) such that they may be neglected.

Thus, under these condi.inns, we shall rite

D=D_+0D, (3.3)

vhere Dv includes those terms which are significant .n the recon-
struction process when the illumination team {8 the reference besm and

hence is given by

P by
= 2C . as{(k, - K )r - 3.4
D, 2P1 ng n-%¢1 (Jn c.m.[(kJ n) ro+ ¢J wn} . (3.4)

and Dr represents the remaining terms.

Sve

| T




3.2.2 Feconstruction of the 3ignal Beawm

Wr are interested in the case where the illiumination beaxm is

the refersnce beam, and is thus given Uy

t{k,.r+9,) ' .
£ . 5 E e J d . (3.5)
Jel

We will consider only one of the tvo first~order diffracted vaves pro-
duced wvhen each periodicity terz in eguation 4.4 i» illuminated by one
of the reference beam waves of eguation 3.5. These will correspond to
the virtual imsge. The other first-order dltfruetbd vavcs'correapand
to the real image vhich is agssumed to be deparated rrom the virtusl
image as vell as being considersbly wesker, and thus will be neglected,

Hence there will be P2(H-P) diffrected vaves which must be

considered. P{M-P) of these vaves contribute to the reconstruction of -

background noise.

Let us consider those waves that contribute to the reconstruc-
tion of the signal beam, leaving the others to be coneidered in detnil
in Section 3.2.4. Thus, let us consider the Jth  {llumination wave in
equation 3.5,

) LR F o 9))

E «E e . {3.6)
J J
We recall from Chapter One that when the i{llumination wave has the same

kK and @ as one of t* two initial vaves which yielded the

| QP OIS
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interference term under consideration, then one of the two first-order

difrracted vaves from this periodisity hes its propagaticon vector R

and phase ¢ egual to Lhat of the other

phase facior = -» }. Thus the terms

wave {except for a constant

M
2c, § 0, cos[tk, -k )re@ -9}
L oePel dn 3 n 3 n
yleld the diffracted waves
. hf : i(En-?- +e -
S, = 2C F, (E-E)e (3.7)
4y loawpay 90 00D
when the illumination wave iy given by equation 3.6, In writing equa-

tion 3.7 wve replaced CJn by °J'bn

the factor

(equation 1.9b) and made use of

F defined in Chapter One, and in addition we neglected the

diffracted waves corresponding to the real image. ag discussed pre-

viovusly.

equation 3.5, then we ocbtain

- ’Z‘i

E = .

d 551 a4
or

p g

E, =20, | FIECE) e

d Lyl paey 0 400
We shull assume that

“ F s CE B

) PJn(EJ Ep) = CLJEH

If ve now consider all the illumination waveg as given by

(3.8)

(3.9)

(3.10)
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and hence equation 3.9 becomes

) P UK Fag -

E, «c ) ? EE e © n (3.11)

d 1 st J ’ )
J=l n=r+;

Upon comparing eguations 3.11 and 3.1 veé see thet equation 3.11 repre-

sents a reconstruction of the signal beam, there being P tefms con-

tributing to each wave in the signal bean.

3:2:3 Translatios Sensitivity

Equation 3.11 shows that the recoﬁstruction of each signal
wave front consictec of a superpositicn of terﬁs, which add in phase
provided that the hologram film plate ig 11l'minated by the 'reference
ﬁeam“ &t given by eguerion 3.5, In generél this requires that the
holegram be repositioned in exactly the same place where it was during

the exposurée of the holiogram, and that the hologram setup remain un-

‘chenged. If this repositioning is not done accurately, the result will

iﬂd

be the appearance of e phase factor e under the summaticon sign in
ejuation 3.11. This can, a3 was observed by van Heerdén (13), result
in the dicappearance of the reconstruction, as the sum may then average
out o zeroc.

To put these statemeéents on a more quantitative basis, .-t usg
consider & tranglaticn of the developed hologram film plate by an
anount ;c in the xz',y' plane. We shall consider the reconstruction

of one of the original signal waves, which i3 of the fnrus
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. {3.12)

In the absence of any translation, the Jth wavefront of the illumina-

tion reference beam interactis with the periodicity term

e <o o o e it 1

ch caa[(xJ -k )r 4 ¢J - ﬁm] (3.13)
to produce a diffraucted wave of the Jorm of equation 3.12. The effect
of the translation of the film plste is to make the phase factor ¢m a

function of
g ~0, . (3.14)

The phase factor ﬁmj may be rpecified by requiring, as before, that

the interference pattern genera. ° by the transmitted portion o the
—— —-—— illumination wave and the diffruc' 4 wave of interest match up with the

recorded interference pattern corresponding to equation 3.13. This is

done in Appendix III. A much easier way of specifying the phase factor

P

equivalent to an equal and opposite translation of both the source and

can be fourd by noting that a translation of the film plate is

the observer {or detector). Since we are considering each of the
wvavefronts to be locally a plane wave, the specification of mjm at

any particular point on the film plate reduces to the problem considered
by van Heerden {13), who phints out that a displacement of the source

by an amount ;o introduces a phase shift of E-;O to a plane wave
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vith propagation vector X ., Since we are considering the source and
observer to be rixed, the total phase shift the cbserver sses in the

diffracted wave in is

{(3.15)

n o ’

B, = (K, - K)F

vhere Kk, 1s the wave vector of the illumination wave and ;o is the

J
displacement of the film plate. Thue, equation 3.11 becomes

P M ik, -k )r 1k re@ -m-ut)
Eg= ¢ S E, e 9 B O°f ¢ ® m (3.16)
J=l m=Pel J n ’

reconstructed signal beam waves is multiplied by the same factcr n ,

vhere

P ik, -7
n= I E e doeo (3.17)
=1

It is clear that if the E, are essentially equsl and if the k, vary

J

sufficiently such that Kk 'Fo ranges ove,r 0 ~ 2n |, then n will be

J
essentially zerc and ve will have no reconstruction.
We should bear in mind <hat ;o is a constant vector and

that the EJ may be functions of position, with the result that n

it Wi SO Y 85 FFos Tan T
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may vary over the film plate. Let us conglder the case vhere

Fo = Ax' Ex, . (3.18)
then
p 1%1 L'Ax*
ne EJ e . (3.19)
J=l

An estimate of the translation Ax‘; reguired to make n + 0 {is found

by assuming that the E, are equal and the dis’ection cosines L' are

4

*
uniformly distributed over the range "mib to & . Then
A
Y e———
A%, X g7 . {3.20)
nax min

We will have occasion to apply the above squation as well as equation

3.19 in Section 3.3, and we shall see Lhat these equations yield pre-

dictions that are in good agreement with sxperimental results.

3.2.4 Background Noise

We view as background noise all diffyscted waves other than
those corresponding to a reconatruction of the signal beam as given by
equation 3.1l, which are not separated in angle from the signul beam.
By separated in angle we mesn having a propagetion vector k whose
direction is significantly different frof those of the signal waves.
We will retain the assuuption made in Section 3.2.2 that the gecmetry

of the experiment is such that we can neglect the weves diffracted from

ha.




h

all periodicities asscc.ated with the terms Dr in equation 3.3,
either because they are separated Iin angle from the signal beam or be-
cause their smplitude is sufficiently small.

This leaves the periodicity terms given in squation 3.4. We
have seen that these terms give rise to a reconstruction of the origi-
nal signal beam vhen the hologram is illuminated with the reference
besm. There are P(M-P) periodicity terms in equation 3.4, where P
and M-P are the number of waves in the reference and signal beams,
respectively. When the hologrem is illuminated with the P waves of
the reference beam, each pericdicity will yield P diffracted waves
(wve are only considering one of the two first order diffracted waves),
but only one of these P waves contridbutes to the reconstruction of
the signal beam. The other P-1 waves constitute s background noise,

and thus the ratio of signal terms to noise terms is

ns 1
N ° Pl . (3.21)

The noise wvaves can be computed in a straightforward manner in the same
! way that the signal field is computed, by using equations 1.16, 1.26,
1.28 and 1.3k,

The fact that the reconstructed signal beam is accompanied by
a background noise can also he seen from the transmittance approach. We
recall that equation 2.10 specificd the transmitied field in the
z' = 0" plane, in terms of the exposing and illumination fields. 1In

applying this equation, we shall find it convenient to write the
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reference beam Ul and signal bean 02 in the form of a sue of plane :

wvaves. Thus we write

' P i*J ;
; Uy =1 Ay e (3.22} !
| = |
? and g
|
M iv i
Up=) B e * (3.23)
k = Psl
vhere the AJ and Bk are real constants and the w’ and wk are
of the form
ve l'x +m'y + @ . (3.24)

Since we are interested in the ceuve where the illumination beam is the

reference beam, we set

=y . (3.29)

We recall from Section 2.2.3 that an arbitrary field can be represented

a¥ & continuous spectrum of plane waves. We can view our choice of

|

|

|

|

\ writing the reference beam and signal beam as discrece sums of plane

|

! waves as either a restriction to fields of this form or as an approxi-

mation to the more general case.

Now acording to equation 2.10, the transmitted field UT

is given by

2
1. L] . #
U, = Ul(Ull1 + U2U2 )+ Ul U2 + UlUl U2 . (3.26)

T

¥
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We are interested in the last term in the above equation, which correa-

ponds to the rasonstrurtion of the signml beam, Neow

-9 ) M iy
J k B, e {3.27)

u.u? u, Z AA e
171 <« J.l JAK

krl

=P+l

and ve gee that if the signal beem 02 is to be reconstructed without
distortion or background noise we must have P = 1 , vhich corresponds
to the case where we have a single plane wave for the reference beam.

We observe that we can write equation 3.27 in the {orm

P i(\liJ - Y

v U, e ] AA e B,e *2 J A% J B e bt .
1’1 %2 =1 o z-;+1 ' le J gapa1 *
ksl

The first group of terms corresponds to the background noise mentioned

previously, while the second group corresponds—to -the reconstruetionof— — 1
the aignal beam, '

It is of interest to compare the power in the signal beam to
that in the noise beam. A convenient measure is the signal to noise

ratic S/N , which is seen from equation 3.28 to be of the form (the

44

factors Uzuz cancelling)

S/N = P i(* » *k -1(* - wkT . (3-29)
A e J A e J
JAR 3k
Jul J=l
k=]l k=l

¥k 39K




We observe that we can write the dencminator N in the form

§ 1{$J -y - ¢l + tm)
N e AAAA ¢ . {3.30)
JKtn JAR Lt m

ALI

Lz

It is of interest to write out separately those terms in equation 3.30
for vhich the exponent is zero. This occurs when the J = & and
k= m (the cases vhere j = k and £ *m not being alloved). There
are Pz such terms, and we can vwrite N {n the form
: P 2 P ile, « ¥ ¥ + %)
| N = ( ) Aj ¢ 1 AMAA e dok o tm (3,3
; J=l Jktm

J¥k
Jve

Lém
l¥m

the film plate, It is clear that if the propagation vectors Ei and or
phase factors ¢1 have sufficient variutions that at any given observa-
tion point (x,y) the WJ will vary over the range O » 2n , and hence
the contribution of the second factor in equation 3.31 can be neglected,

as it will essentially average out to zero. In this case the signal to

noise ratio is unity:
S/N =1 . (3.32)

This can b2 interpreted in a simple way by recalling that there are P
waves that contribute the reconstruction of each of the signal beam

wvaves. These vaves add in phase so that the power in each of these
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signal vaves goes ac PE . On the other hand there are P{P-1) corres-
ponding nolee waves, byt these don't add in phase and hence their pover

} goes as  P{P-1] , vwith the result that the signal to noise ration goes

a5
.Pz -1
. P(E-1)
for large P .

3.3 Translation Sensitivity Experiment

In this section we shall describe an experiment vhere the
total power in the reconstructed signal beam is measured as 2 function
of the error in repositioning the hologram plate, The analysis of
Section 3.2.3 ie applied to compute the quantity being measured and ex-
perimental and computed values are compared, and found to be in excel-

lent agreement.

3:.3.1 Description and Analysis of the Experiment
The experiment consists of taking a hologram using a multiple

wvave reference beam, and then measuring the total power in the recon-
structed signal bean as a function of the displacement of the developed
film plate from the position it occupied during the exposure of the
hologram. For reasons of experimental convenience, the signal beam wvus
taken to be a single converging wave, This corresponds to the special
case of M = P ¢ 1 in equation 3.1. It follows from equation 3.16 that

the reconstruction of each vavefront in the signal beam can be
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conaidered separately with regpect tu the efferts of plate treasistion,
il thus there is no loss of generality incurred by this chitice ©of the
signel bewnm.

The reference bean ig produced by illumineting a diffusely re-
flecting surface with a collimated laser beam, the scattered light form-
ing the reference bram, The reference beam ls thus of the form given
in equation 3.1.

The antual geometry used in the experiment is shown in Figure
3.1, The converging wave which forms the signal beasn is incident on
the film plate at an angle of inclidence of Ehu, and comes to a focus
behind the film plate at (x',y',z') = (-11", O, =2L.T") . 1t expuses
anelliptically shaped area centered at the origin., A converging beam
wvas used because it provides a converient means for the measuremert of

the total power in the reconstruction of the signal bVeam, and for the

diserimination against background noise,
The reference beam ls provided by the light scattered from a
magnesium oxide powder layer sandwiched between two microscope slides.
The magnesium oxide layer is illuminated by the laser beam (which was
divided into two beams by a beam splitter) which is passed through a
3/32" diameter aperture before striking the oxidc¢ lsyer at an angle of
26° 30' as shown in Figure 3,1, The reference beam can thus be agsumed
to arise from a large number of point sources distributed over an
elliptically shaped area in the x' s -1/2 inch plane. The amplitude of

each point source depends on the variation in amplitude acrosg the cross

section of the {lluminating beam, and will be dealt with later when

cor —
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81

required in the calculstions. The point sources have random phases.

The light scattered by the reference beam source points will
{liuminate most of the Tiim plate for =x' » <1772 |, but the only ares of
interest is that area illuminated by both signal and reference bveams
since this is the only area which will yield a reconstruction. This
consistes of the elliptically shaped aree which is {lluminated by the
sigual beam. The displacement Ax; in the x' direction that the de-
v2loped hologram film plate must be moved in order to have the recone
struction vanish is a function of the observation point in the hclogram
ar=a. Thaet {9, if we were to observe the reconstruction through u
small &perture placed at some observation point (x',y',C) in the
hologram area, the value of Ax; will vary with (x',y',0) . 1In this
particiular problem it is the total power in the rezonstruction thet isa
measured, which is the sum of the power passing through each element of

- —area-of the region which constitutes the hologram.

An estimate of the Ax& can he obtained by neglecting the
variation of the y' direction and applying equation 2.20. Thus, to
obtain an estimate of Ax& (max) , equation 3.20 is applied to the case
vhere the source points which generate the reference beam all lie along
the line between {-.5, 0, .748) and (-.5, 0, 1.052), ‘The observation
point which yields the maximum value of ax/ is st (-.25, O, Q).

The angles between the x' axis and the lines which Join the

two extremities of the source line and the observstion point are

0, = van"t (-’-?-2—%—) = 15% 14 (3.33%)




: a2

i

!

e -1 ,1.052

, . - - - L) 2

. 62 tan © | 35 }ow 76 38 {3.34)
and hence

P omax = cos(T5% 14') = 25483 _ {3.35)
L' min » cos(76° 38') = .23118 . (3.36)

Using the above values in equation 3.20, with A = .6328M , we find as

an estimate for Ax;

ax) = 26.7 microns . (3.37)

As will be seen later, this estimate is in quite good agreement with

experimentsal measurements.
The quantity which is messured in the experimenpiigrthe total

power Pn ir. the reconstructed signal beam a8 a function of the dis-

placement of the film plate frem its original position, noyrmslized with

respect to the power obtained wuen the displacement of the film plate

,ﬁ,__‘ - e

is zero. Pn is given ty

J J ﬁd(Ax’)-E;(Ax‘)dx'dy'

| p =X (3.38)
E J ; By(0)Ej(0)ax'dy"
x' !

vhere the integratict over the x'y' plane extends aver the area of

the rilm plate where hoth the sigrnal ard refersnce beam wavetionts
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existed during the expcsure of the hclogram.
The diffracted field Ed is given by equation 3.16, with
r = Ax'e . (3.39)

The factor n , defined >y equation 3.17, then becomes

P 1%1 ﬁjbx'
n(ax’) = Z E‘1 e © . {5.40)

V=]

Recalling that we have only a single signal beam wave, we see that
M=P+ 1 in equation 3.16 {only one term in the summation over m J,

and hence, using equations 3.16 and 3.L0, equation 3.38 becomes

E E n(ax') n* fax')ax'day!
1]

f
y

P (ax') = 2% - (3.51)
L

J E s n{0) n* (0)ax'dy'

Observation of the develcped hologram plates has shown that the ampli-
tude of the signal wave Em is essentially constant over the area of
integration, and thus it is a reasonable approximation to remove

Em'gm from under the integral sigrp in both the numerstor and denomina-~
tor of equation 3.41. Thus

j f n(ax') n* (ax')ax'dy’
X

P (ax') = L . (3.42)
J ] n{0) n® (0)ax'ay’
X

ly'

e o, et s o o ot b 3 e Sy,

[ L]
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The quantity E1 in the expression for n given by equation
3.40 is the amplitude at the point (x', y', 0) of the field scattered

by the jth scattering point on the magnesium oxide surface, E  will

b

be assumed tc be given by

CA

E, =L (3.43)
J r

J
vhere AJ is the amplitude of the wave illuminating the scattering sar-
face at the jth scattering point and rJ is the distance from the

scattering point to the point x', y' on the emulsion surface. C 1is

a constant which we will assume to have approximately the same value for
all scattering points and thus will cancel out in equation 3.L42. The
illumination wave i{s an unfocused laser beam passed through a 3/3%
diameter aperature. The variation of A, across the laser beam de-

J

pends on the geometry of the laser cavity (mirror curvatures and spacing),

the transverse mode structure, and the distance from the output mirror,
The laser was operated in the lowest order transverse mode, and thus
has an amplitude veriation which is Gaussian (truncated by the aper-
ture), Thus, the variation with r (defined normal to the laser bean

axis) is
2
A(r) = Eo e~ . (3.4k)

e constant o wag determined by fitting the above curve to measured

data on the variation of the amplitude with r . A value of

o=l mm? = 645.16 (in)~2 (3.45)
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wes Yound to fit the measured dats wvell, An examination of the geouetry
of the experiment shows that the amplitude of the illumination wave at
tne point (yJ. zj) on the magnesium oxide surface is found by setting

:2 in equation 3.44 equal to

2

r° s yi - {z, - 1)? cose(26° j0') . (3.46;

J

Tae distance rJ from the scattering point (-1/2, yJ, zJ) to the

soint {x', y', 0) on the emulsion surface is

ryo= xt s 1/2)% + (y' - y,)¥ + zjl”? . (3.47)

Equations3.43 to 3.47 specify EJ as a function of the coordinates of

the jth scattering point and the coordinates of tne observation point

_ on the hologram, The remaining quantity that needs to be specified in

order to determine n is 25 , the x' direction cosine of the propa-
gation vector id of the wave scattered by the jth scattering point,
evaluated at the observatior point (x', y', 0) . We assume k

J
points in the direction from (-1/2, yJ, zj) to (x', y', 0) , and thus

g -"—'+1L2- ) (3.48)
3

The applicatinn of equations3.U0 and 3.42 to 3.48 permit the
computation of the normalized power diffracted into the virtual image
as a funciion of the translation distance 4Ax' . This was done, with
the calculations being done numerically with the aid of a digital com-

puter. The results of this computetion will be presented in Section

e+ i oot St - o oo W ¢ 5 ¢

A }




3.3.3, which follows the next section which desls with the details of

the experiment.

3.3.2 Experimentsl Details

The basic idea of the experiment was to take & hologram of a
simple wavefront, with the reference beam being of the form of a field
produced by a large number of point sources. The hologram was then re-
positioned and the total power in the reconstructed signal beam vave-
front was measured as & function of translation of the hologram plate
from its initial position. The experimental apperatus which was used
to perform the experiment is shown in Figure 3.2.

The apparatus on the iron surface plate is that which vas
used to expose and illuminate the hologram. The source used wus a

helium-neon laser which has a power output of about three milliwatts

“when operated in the lowest order transverse mocde. A camera shutter
vas used to control the exposure time, vhich was ol' the order of ten
seconds. A beam splitter provides two beams, one of which is passed
through au optical system which performs a lov pass sgpatial filtering
operation and then produces a converging beam which comes to a focus
about 27 inches behind the film plate. The other beam is directed by a
seriea of mirrors (which are positicned so as to make the path lengths
of the two beams approximately equal) positioned so that the beam falls
on a diffusely reflecting surface oriented so that the scattered light
reaches the region of the film plate which is illuminated by the con-~

verging beam. The diffusely reflecting surface is a layer of magnesium
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oxide powder pressed between two microscope siides. The angle of inci-
- dence of the incident laser beam 1s adjusted so the reflected beams from
the glass sir interfaces do not strike the region of the film plate
which constitutes the hologram area. The film plate {Xodak GL9-f
Ux5x.25 microflat plate) was held in & specially designed film plate
holder which permitted accurate repositioning and translation of the
film plate., Translations of the order of a micron or less were possible
through the use of a micrometer drive mechanisw with & 187:1 gear reduc-
tion attachment.

The apparatus on the smaller table (see Figure 3.2) is the

system used to measure the power in the reconstruction of the converging
wavefront. The converging beam is chopped at about 103 CPS, passed

through a small aperture located ot about the focal point, and then
detected by a photomultiplier. The aperture has the function of dis-

% T T T 7 T eriminating sgainst-background -light scattered from the film plate which

is not part of the reconstructed signal beamn. The output of the photo-

multiplier is measured using a lock-in amplifier, which makes use of a
reference signal generated by the chopper.

During exposure of the holograms the iron surface plate vas
"floated " to uncouple the apparatus from beilding vibrations. In addi-
tion, acoustical shielding wes ueed in order to reduce any acoustically
excited vibrations in the critical elements of the hologram taking

apparatus (beamsplitter, mirrors and film plate).




e . e R

3.3.3 Discussion

The regulte of the numerical calculations referred to at the
énd of Bection 3.3.1 and the experimental resulis are shown in Figure
3.3, The agreement between experiment and theory is excellent, consid-
ering the approximations made in the analysis and numerical computa-
tions as well as the dirficulties involved with the erperiment. Fur-
thermore, we observe that the estimats of Ax; (the ‘ranslation
distance required to make the reconstruction vanish) given by eguatinn
3.20 of 26.7 microns (equat.on 3.37) is quite ascurate.

There were two major areas of difficulty thet were encounter-
ed in carrying out the experiment, namely low power ievels in the re-
construction of the sighal beam end uifficulties i{n obtaining
accurate translation motions of tke order o¢f a micron or less. The low

power levels were due mainiy to the fact that in this experiment we are

~forced to illuminete t%e hologram with the reference beam which vas
used to expose the hologram, which was quite weak due Lo the relatively
low power of the luser, the inefficiency of the scattering step, and
the l/rE loss between the scattering area and the film plate. This
latter loss was minimized by placing the magnesium oxide scattering
layer as cloge to the film plate as was mecharically possible. 1In
addition, the relutive power levels of the signal and reference beam

as well as the exposure time were gdjusted to obtain maximum efficiency
from the hologram. This was accomplished by an "educated" trial and
error procedure, making use of the results of an experimental study of

the holographic diffraction grating, which is discussed in Chapter Four.
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The most efficient hologram produced a reconstruction with a pover
level of the grder of 2 x 1077 watts, which nlloved a meagurement of
Pn(Ax') down to a value of about 0.05 before the sensitivity limit of
our detection system was reached {adour 10-10
mensured but the noize in the detection gystem became cbjlectizusble.
The translation of the fiim plate was accomplished by pushing
the film plate sideways in & specisl holder with a micrometer drive,

which in turn vas driven by a 187:1 gear reducticn device, Once the

backlash of the device was taken up there was no difficulty in moving

vatts). Lower values wvere

—— s s

the rod pushing on the film plate by very small increments. Trouble was

experienced, hovever, with the movement of the film plates when thin
.0LO" x U" x 5" film plates were used, and satisfactory results were
obtained only when thicker and heavier ,250" x 4" x 5" microflat plates
vere used.

It was observed that a translation of the hologram plate re-

aulied in a corfespondinéri;khéiatidﬁ”dfAghéikééonstrﬁctearbeam. This
required a corresponding movement of the small aperture used to block
out the background noise. A similar motion of the focused beam was
cbserved in earlier experiments (not reported in this thesis) dealing
with holographic lenses, in which a hologram was taken of s converging
vave, using a single plane vave for a reference beam. In that case
the reconstructed converging wavefront remained in register with the

hologram plate, as could be expected.
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3:b Fourier Trensform Hologreme vith Multiple Wave Reference Beams

we recail inat the fundementel process involved in holography
is the interference of two fields in the exposure of the fllm plate.
One of thege fields {s arbitrarily referred to us the reference bteanm
and the other as the signal besm. By convention we refer to the field
vhich is used to jlluminate the hologrum as the reference beasms, and the
field that is to be reconstructed (virtusl image) as the signal beam.
We recall that the most common aitunt;on is where the refersnce beam is
a gsingle wave and the signal beam is some complex field sﬁch ag the
light acattered by & diffusely reflecting object. It is now of interest
to examine a particular case where the reference beam is the complicated
field and the signal beam is the plane vave. To be more specific, we
shell consider the case of the Fourier transform hologram, where we
adopt the point of viev that the field due tc the transparency is the

reference beam, and the plane vave i3 the signal beam.

This type of hologram is of particular interest, since it is
in fact the complex part of the "matched filter” used by Vander Lugt
(L1,42) to perform signal detection by cowplex spatial filtering.
S8imilarly, Gabor utilizes & varistion of this type of hologram in a pro-
posed character recognition system (43). We shall be interested in ex-
apining the translational sersitivity of Fourier transform holograms,
both with respéct to translations 5f the transparency and translations
of the hologram 1tsekr._ We will uJﬁo be interested in considering the
backgiound roise, and will exwsine both the translational sensitivity

and background ncoise when the trangparency is diffusely illuminated.
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Before considering Fourfer transform holograts with sultiple wave raf-
erence beampn, lhowever, we shall review the case where the reference

benm consists of & single plane wave.

3.4.1 Review of Fourfer Trunsform Hologramg

By s Fourier Tranaform hologrum we mean s aclogram of a twa-
dimensional transparency, taken under auch conditions thut the exposing
rield at the film plate due tu the transpsrency i{s of the form of a
Fourier transform of the field trarsmitted by the trunsparency. This
can be accomplished by the use of a converging lens, when the transpar-
ency and film plate are located in the front and back focal p;anes of
the lens, respectively (the Fourier transform relationship between the
amplitudes in the front and back focal planes of 8 lens i3 reviewed in
Appendix V), Other experimental ccnfigurations are possible (34), and
ve shall briefly review Stroke's method of "iensless" Fourier transform
holography at the end of this section.

The treatment which we shall give here will be a brief review
of this well-known aspect of holography (2), (3h), (38) and we shall
limit our treatment to a demonstration of the formation of an image of
the cbject transparency when a lens is used in the reconstruction pro-
cess. A furthner discussion of certaln aspects of Fourier transform
holography will be given in the following sections.

Let us begin by considering the case vhere the object truns-
parency is placed {n the front focal plane of a converging lens and 11-

luminated by & plane wave of unit amplituie at normal incidence. If

e o 1 o0 ot o 1 A b et
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7(xl, y}) is the amplitude transmittance ‘e ransparency, then the
amplitude distributior in the btack focal pla:.  ~ the lens is showa in
Appendix V to be given by

=i

Eglxywyy) =57

g ——F

j T(xljyl) e

(3.49)
We shall take the reference beam to be an off-saxis plane wave of unit

amplitude which has the form (in the Xy¥ s planez)

an
i+ (x, + my,)
» e e (3.50)

Ea(xziye) = e

Such a reference beam could be produced by a point source suitably

located in the plane of the object transparency, or by by-passing the

a film plete in the back focal plane of the lens, and illuminating it
with the fields ES and ER . For simplicity we ghall assume that the
transmittance Ty of the developed film plate, or hologram, is simply

equal to the intenaity of the exposing fields. Thus

{ 3 » * { )
Ty = Egfg v BgBg + EgEg + EgRy : (3.50)
In the reconstruction process, the hologram is placed in the front focsl

plane of a similer lens and the reconstructed imeges are formed in the

back focal plane. Thue, the amplitude of the field in the hack focal

plane (x3. y3) is given by
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2
-1 =R (x.x. + ¥oia)
Af 17273 2’3
ER e dxzdyz R

“*—-ﬁ‘

i
E(xB' y3) . - 3F J
(3.52)

The terms in the expression for 1, as given by eguation 3.51 which

H
are of interest are EREE and ESE; » which correspond to the real and
virtual images, respectively. Let us consider the virtual image. Sub-

stitution of ESE; for 1, in equation 3.52 yields, using equations

H
3-“9 and 3.50,

ot By (x, +x) vy, +y))
1.2 A2 71 3 271 3
E,(x5,¥3) = -(F) H” t(x,y,) e

xax, dy, dx,dy, . (3.53)

-
Integration over x,,y, ylelds (f)" 8(x) + x3) §(y; + y;) and hence

Ev(xa. y3) = - r(-x3,-y3) . (2.54)

Similarly, the amplitude distribution Er(x3, y3) due to the real image

tern ERE; is given by

-1 gﬁ{x (~x, + x, - 2r1}]
Blxg vy = P[] g yp e ATETET

-1 ZL y (-y. +y. - 2fm)
Ar Y2V Y1 3
xe dx dy, dx,dy, (3.55)
and hence
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Er(xB. y3) - 1'(13 - 2re, vy - 2fMm) . (3.56)

Thus, both the real and virtual images yield a reconstruction of the
trancparency, and these are separated due to our choice of an off-axis
reference beam. The zero order terms are likewise separated from the
reconstruction being centered at (f£t, fm) .

Let us now briefly review the technique of Stroke (38, 39, LO)
vhereby a Fourier transform hologram may be obtained without the use of
a lens. The essential feature of this technique is the use of & point
source located in the plane of the object for the reference beam. This
results in the cancellation of certain quadratic phese factors wvith the
regsult that the hologram obtained has a form similar to that of a
Fourier transform hologram.

To put these statements on a more quantitative basis, let us

planes a distance z, apart. The transparency with transmlittance

t(a, 8) is illuminated with a plane vave of unit ampiitude at normal
incidence and this yields the field in the xy plane giveu by (Fresnel
diffraction)

{ ?lzo in

X X;f{{x~a)2 + (y-B)RJ
JJ 1(a, 8) e"7°

Eg(x,y) = - L. dad8 . (3.57)

Az

0

Now suppose, as wa3 suggested by Stroke, that the reference beam is pro-
vided by a point source located in the o,8 plene, Taling the point

source at the origin in this plane yields a field in the xy plane of

assume that the transparency and film plate are located in psrallel — -
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the form ;

. oET
! E(x,y) =A = (3.58)

or, taking Ao =1,

En(x.y)

e
;‘ . (3¢59)
[+]

The resulting amplitude transmittance of the developed hologram plate

: is, using equations 3.51, 3.57 and 3.59

. .
5 y(xy) = EgEy ¢ EE] ¢
2 (6% 4 6%) - 2L (x4 py)
ST | P ) I ST S
i 0.
t
7
in 2 2, 2ui
t . - e, {a 87) 2 (ax + By)
L + 22 JJ *(a,B) e e dadg .
1 o
(3.60)
We observe that except for the factors
i in 2 2
| * 5 (e + 87 (3.61)

i ¢ °

equation 3.60 is of the same form as was obtained in the previous
section, for the case of the Fourier transform hologram. Stroke (38)

notes that the above phase factor merely makes the reconstructed object
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appear as though it woere recorded through a thin negative field lens,
and that this can be compenssted for in the reconstruction. Winthrop
and Worthington (34), in their paper dealing with the Fresnel transform
repressntation of holograms and hologram classification, refer to &
hologram of the form of equation 3.60 as a quasi-Fourier transform
hologram, and they discuss its imaging properties. Stroke (38) makes

it clear that this arrangement is not limited to transparencies, but

can also be used with diffusely reflecting objects, and presents experi-

mental vork in this area (LO).

3.&.2 Translation Sensitivity - Displacement of the Transparency

In the previous section we reviewed Fourier transfornm
holograms, and considered the case where the reference beam was taken

to be a plane wave and the signal beam was the field due to the trawns-

parency. We now wish to turn this around, and consider the field due

to the transparency as the reference beam and the plane wave as the

signal beam. Thus

an
-1 == (x,x, +y.¥,)
X
i ” thx ) e At *a% 2

Bo(xye¥y) = - 55 dx, dy, (3.62)
and
i -2—;-" (l.:t2 + myz)
Eglxpy,) = e (3.63) .

This re-labeling of the exposing fields, of course, doesn't change the

hologram in any manner, but it is convenient because it allows us to




A O 553 w5 - bt se e

[ ERgTatn——

99 |

retain our designation of tue reference beAg as the field which is used ]
to illuminate the hologram,
Thus, let us consider the case vhere a transparency having an

amplitude transmittance f(xl, yl) is placed in the front focal plane

i
e e L

(xl, yl) of a converging lens of focal length f and {lluminated with
a plane wvave at normal incidence. The film plate is located in the back
focal plane of the lens (xa. ¥,) eod illuminated by the field due to
the transparency (the reference beam) and by an off-axis plane wvave

i {the signal beam). As before, in the reconstruction process, the
hologram is placed in the front focal plane (xa. y2) of a lens of

i focal length f and the reconstructed images are formed in the back

: focal plane of the lens (83, y3). If the illumination i{s done with the
E reference beam, then the resulting amplitude distribution in the bvack

|

focal plane is given by equation 3.52. Thet is,

28
-1 57 (xp%3 + vy3)
dx,

i
E(xs.y3) =-37 Jj ER(ERE; + ESE;) e dy, +

oy
‘ g ! -1 57 (x5 + ¥py5)
| -vr )| B e dxdyy ¢
2an
-y == (x X, +y )
1 At X%3 T Yoy
- iF “ EgEEs © dxdy, . (3.64)

The last two terms are vhet is of interest, as they correspond to the
virtual and real images, respectively. Let us consider the virtual

image. Using equation 3.62 for the reference besm and equation 3.63
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for the signal beam, the virtual imoge has an amplitude distridbution in

the (x., ya) plane given by
E(x,y.) » ()3 tix, oy, ) tHx!,y!)
v Xys¥y Yy 11 11

X

en
~i S={x (%, ~x!ex =Af) ¢ y (y. -y!+y.-af)]
e A2 27171773 dx,dy, dx)dyidx, dy, . (3.65)

We see that integration over x, and y, yields (Af)2 G(xl-xi+x3—zr)

6(yl-yi+y3-nt) and hence, after integrating over xi and yi , We

obtain

Ev(xs,yB) -'¥% JI t(xl,yl) t'(x1 *x, - Lf, y, * Yy - nr)dxldyl. (3.66)

Similarly for the real image, wve have

Er(33|y3) = -(.Alr-)3 J > e }f T(xllyl) T(xiskvi;
2.}
4 Ex (x, * x! +x,+2f) +y (y, +y!+y, ¢+nl))
(3.67)
vhich yields
i
Er(xa.y3) v II t(:l.yl) t(-xl-x3-lf. -yl-y3-nf)dx1dyl . (3.68)

The above analysis is quite similar to that used by Vander
Lugt (41), who has formulated these types of calculations in a conven-

ient operational notation in a recent paper (il). An examination of
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equations 3.66 and 3.68 shove the familiar result (38,41), that {n a
system of the type considered above, the formation of the virtual image
involves & correlstion opsration, while tbe formation of the resl image
involves e convolution.

Let us now examine the effect of a trenslation of the trans-
parency on the virtual image, Thus, we shall consider the case where
the hologram has been exposed and developed, and then replaced in its
original position, but where the transparency that was used to provide
the reference beam during the exposure cof the hologram is translated
by an amount ;o in the X0 ¥y plane from its original position,
vhere

rome Ax+ e, &y . (3.69)

The fllumination field, provided by illuminating the displaced trans-

__parency vith a plane wave of unit amplitude at normal incidence, is

then given by equatioa 3.62 with T(xl,yl) replaced by t(xl-Ax.yl-Ay).

Equation 3.65 then becomes

Ev{xa.ys) - (f?)3 J ces I r(xl - 8x, y, - ay) t'(xi. yi)

1 —{x (x,=x)ex <tf) + y (y, -y!+y.-mf)]
2171 2717173 ax dy, dxidyldx,dy,  (3.70)

vhich ylelds, after integrating over xl.yl.xi and yi

Ev(x3,y3) = -L-jj r(xlmAz, yl—Ay) T%(x 1 ¥Xgobe yl+y3-mr)dxldyl - (3.1)

e & o et e i ey et et .
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Making the change of varisbles u = x, - A and v w ¥, - & y the
above equation assumes the form

:v(:s.y3) - g% If t{u,v) r'(u+x3+ax-tt, v+y3+4y-at) du dv (3.72)

and it is seen that a translation of the transparency merely results in
s similar translstion of the virtual image in the (xs.ys) plane. An
exazination of equation 3.72 shovs that this translation is equal to
-Fo s and thus the virtual image remains in register vith the image of
the displaced transparency in the 13,y3 plane, vhose image is also
displaced by ”;o . This resclt is anslogous to the prediction by

van Heerden (12) that his "ghost image"” remains in register vith the
image of the illuminating transparency, and is well known in the ficld

of complex spatial filtering (hLl.L4).

(x3.y3) plane, the virtual image is not affected by a translation of
the transparency. This can be expleained in physical terms by noting
that the field transmitted by the transparency can be expresced as a
continuous distribution of plane waves. A translation of the transpar-
ency in the (xl.yl) plane doesn't alter the direction of any of these
vaves, and hence they are imaged at the same points in the (xz,ye)
plane regardless of the translation. There 18, however, a phase ahift
produced by the translation which accounts for the displacement of the
virtual image., This phase shift, in the (x2,y2) plane, can be found

by using equation V-14 (Appendix V), which gives the opticel path
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length between the points (xl,yl) and (xz.yz) . What ve are interest-
ed in is the change in optical path length as & function of ('2’72)
produced by o translation of tho transparsucy or "source” in the

1@

X4 plane, This will give us the phase shift e a9 & function of

(xg.yz) . We observe that
9= ?Jti [r(xl + bx, yl + by, x2'y2) - r(xl'yl’xE’yz)] (3:73)

vhere r is given by equation V-1b with g = f ,

Thus, using equation V-1l we find

ny

il

[

!

(x, ox + y, ay) (3.74)

b
-

and hence

v
-{ &= (x, 8x + y,_ by)
e A2 2 : (3.75)

vhich accounts for the displacement of the virtual image by {a&x,ay) in

the (x3,y3) plane.

3.4.3 Trenslation Sensitivity - Displacement of the Hologram

Let us now consider the case vhere the transpurency is left
in its initial position, dut the hologrem plate is translated {n the
(xe,yz) plane by ;o . As before, we shall examit th: effect of the
translation on the virtual image, in the (x3.y3) plane. In the ab-
sence of any translation of the hologram (4i.e., when the hologram is

replaced in exactly the position it was {n during exposure) the
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smplitude of the virtual imege in the (:3,y3) plane is given by the

second ters in equation 3,6k

. -1—-(: *y
Ey(x373) * - 57 ” Eplxga7,) Eplxnvy) Eglxyuy,) e 32 dx dy, .
(3.76)

A translation of the hologram plate by ;o meaps that in th: above

equation

E;(xz,yz) Es(xz,yz) + E;(xa - 8%, ¥, - ay) Es(x2 - ax, ¥, - ay)

and hence the expression for Ev(x3.y3) becomes, using equstion 3.62

for the reference beam and equ.iion 3.63 for the signal beum,

Ey(xgry) = 07 [ o [ sxgy) g

f_lx i_l-xk¢ +- ‘f) + 12_11-—’17‘ ys -r)) L

-1 %% [Ax(x + AL} + Ay(y' + nf)]
xe ldyldxidyidxedya , (3.77)

Integrating first over Xy s¥5 and then over xi.yi yielda
E,(x . = (x ) 1%(x, + x, - Lf + - mf)
3Y3) * 37 J 1" 1t RIS

2%
o1 £ [Ax(x, + x.) + ay(y, + ¥,)]
xe Af 1 3 1 3 d.xldyl . (3.78)
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We seec from the above equation that the result of & transiation of tha
hologras plate by an amount 50 is the appearsnce of the phase laclor

ax
-1 5= {ax(x, ¢ x,; + ayly, + y.}!}
U T 1% 1773 (3.79)

under the integral sign. It is clear that the effect of this phase
factor depends on the nature of 1t and upon the amount of translation.

v oscillates

1t ;o is sufficiently large such that the phase factor e
rapidly in that portion of the range of integration which contributes to
Ev(x3,y3) then Ev(xa.yB) will be essentially zero, and the transle-
tion will have resulted in the dligappearance of the reconstruction of
the signal beam. On the other hand, if r_ is tufficiently swall such
that e‘* is very slowly varying, then the effect of the translation

will also be small.

These results are analogous to those obtained in Secgionzé:g:§jﬁ o

vhere no lenses were used. In both cases a translation of the hologram
plate can result in the disappearance of the reconstruction of the
ajignal beam, with the amount of translation required to make the recon-
struction vanish depending on the nature of the "source.” There is,
howvever, an important difference betwveen the tvo cases as vhen there
are no lenses used a translation of the eource is equivalent to a
translation of the hologram, and thus the reconstruction is equally
sensitive to either a translation of the source or a translation of the
holograz plate. On the other hand, the Fourier transform hologram is

invariant to a translation of the source (i.e,, the transparency) but
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is quite sensitive to & translation of the hologram plate.

A more direct compearison between the two cases will be made
in fection 3.4.5 vhen we ronsider diffuse illumination, but before
pursuing the analogies between the analytical results of this section
with those of Section 3.2, it should be noted that in Section 3.2 we
were interested in computing the reconstructed signal field at an
arbitrary point on the hologram plate, while in this aection we have
dealt with the entire reconstructed field imeged in the back focali plane
of a lens. Furthermore, the virtual image that we have dealt with in

this section includes what was referred to as noise in Secticn 3.2.

3.b.b Background Noise

We sav in Section 3.2 that when a multiple wave reference

beam was used the virtual image contained bhoth a reconstruction of the

A -~ ~“original mignel beam and a number of wavius that were designated as - — -

background noise. In that section, because of the form of the fields,
it was convenient to treat the reccastruction of the signal beam and the
background noise separately. In this section, however, ve have found it
more convenient to treat the fields in their entirety. Thus the virtual
image Ev(x3’y3) contains not only a reconstruction of the signal bear,
but also the "background noise." The form of Ev(xB.y3) is found in

a straightforward way by using equation 3.66 which expresses Ev(x3,y3)
in terms of the autocorrelation of the amplitude distribution of the
reference beam in the (xl,yl) plane,

It is clear that since the signal beam has been taken to be a
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plane wave, in the 1deal ‘e where the hologram and imaging lens are
of infinite aperture, a - .se-free reconstruction of the signai beam
would require Ev(x3.yJ to be a delta function. We can examine the
effect of the nature o the reference beam on the form of Ev(x3.y3)
in physical terms by observing that the more closely Ev(xz,ye)
approaches that of Es(xg.yg) {uniform amplitude with a linear phase
shift) the more closely Ev(xa,y3) will approach being a delta

function. Thus, since
»
Ev(xziyz) = ER(XQ’YQ) ER(xz,yz) Es(x2,32) (3-80)

we gsee that the more localized Eﬁ(x2’y2) is, the more degraded will
be the reconstruction, as evidenced by the "spread" of Ev(xs,y3) .
Thus the worst case wculd appear to be where ER(xe,yz) approaches a

delta function, which corresponds to & rather uniform reference beam

ence beam is produced by a single point source in the (xl.yl) Plane,

then

» &
ER(xe,ya) ER(xe,ya) constant

and hence the reconstruction will be essentially noise free. Thus, it
is clear that the more "localized" the reference beam source in the
xl.yl plane, the more closely Ev(x3,y3) will approach the noise-free

case. Similar conclusions can be reached by an examination of equation

3.66.

4

e e s e b

e




108

E s S

3,4,5 Diffuse Illumination

Ve would nov like to consider the case vhere the transparancy
is 4iffuse.- 1lluminated, such as would be the casge if a plece of
ground glass was placed behind the trensparency and illuminated with a
plane wave. It 1s clear that an exact specification of the field in

the (x plene is then quite impractical, because of the inherent-

liJ
ly rendom nature of the diffuser., Nevertheless, there is some definite

field distribution in the (xl.yl) plane, and it can be represented by
#alxpeyy) = N(xl,yl) tlx,,y;) (3.81)

where 1 is the amplitude transmittance of the transparency and N
accounts for the diffuger.

The question arises as to whether it is valid to apply the
analysis used in the preceding four sections, where we merely replace

t(x,y) by N(x,y) t(x,y)} . We recall that wve did not place any ex-

plicit restrictions on 1{(x,y) , but there are some implied restrictions
due to our use of the Fourier transform relationship between the ampli-
tude distributions in the front and back focal plenes of a lens, which
is a good approximation to the actual case only for paraxial rays.

Thua, vhile the Fourier transform relationship may yleld quite accurate
predictions for transparencies where the angular spread of the diffract-

ed waves is vrelatively small, i+ may not be too accurate when a large

angular spread exists,such as could be generated by a diffuser., A
thorough investigation of these points will not be given here. Instead,

we shall use the analysis of the preceding sections, keeplng in mind

L
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the limitations of the gnalysis,

Thus, it is clear that the same translational invariance of
the transparency (plus the diffuser) exists as before, and likewise
the same type of translation sensitivity exists with respect toc a
translation of the hologram plate,

We observe that with the diffuser, it is quite reasonable to
congider the reference beam to arise from a very large number of point
sourcesg of varying smplitude and phase distributed throughout the por-
tion of the (xl,yl) plane occupied by the transparency. Then, since
each point source in the (xl.yl) plane generates a plane wave in the
(xe,yz) plane, the exyosing and illumination flelds are of the form of
a sum of plane waves, and the analysis of Section 3.2 is directly
applicable. The invariance of the reconstructed signal beam to a trans-

lation of the transparency (plua diffuser) is immediately evident rrom

equation 3 17 when ve note that the lens has the property that all rays
reaching a given point in the (xe,ye) plane must have left the

(x;,y,) plane in the same direction. Thus all the k's in equation
3.17 are constant and hence the magnitude of n 1ig a constant independ-
ent of ?O , and thus the reconstruction is not affected by a transla-
tion of the transparency (plus diffuser).

Similarly, the analysis of Section 3.2 is directly applicable
to the case where the hologram plate is translated, but we will not con-
gider this further here, since this has been rather thoroughly covered
in previous sections. What is of interest, however, is an examination

of the effect of the diffuser on the "background noise." Thus, let us

s e e pm—— P P Him
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consider equation 3,66, with 1t replaced by Nt :

-3 ]
Ev(x3.y3) * 7 ” T(xl,yl) N(xl,yl) T'(xl * X, - L, y, + ¥y - wf)

N¥(x) + xy = 88, ¥, + ¥, - mf)ax dy, . (3.82)

3
It is apperent that in general the use of the diffuser will

make Ev(xB,y3) wuch more nighly localized, since one could reascnably
asgume that the "random” neture of a diffuser would imply that the above
integral will have negligible value unless the arguments of N and N*
are almost equal. To put this another way, we may think of the diffuser
as generating "white noise," in the sense that the autocorrelation
function of N may approach a delta function. This will obviously
dominat= the above integral, with the result that E"(13~y3) "illfﬁf

quite 1ocaiiiéa:7
These observations can be put in physical terms by recalling

that the spreed in Ev(x ) could be associated with a locallization

373
of ER(X2’y2) . The effect of the diffuser is then to spread ER(xZ'y2)

which in turn results in a narrowing of Ev(x3,y3)

3.4.6 Discussion

In the previous sections we have examined the translation
sensitivity and background ncise associated with Fourier transform
holograme when the "reference beam" is the field generated by illuminat-

ing the transparency, and the signal beam is an off-axis plane wave.

[ S e s a o el bt N -
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This type of hologram is of particular intsrest because of its use in
various character recognition systems, such as those discussad by
vander Lugt (41,L2) and by Osbor (43). In systems of this nature a
Fourier transform hologram is takeii of a transparency containing the
character or characters to be recognized, and the recognition operation
is accomplished by illuminating the hologram with the field from a
transparency (using the same optical system ac was used to generate the
hologram) which may or may not contain the original character or
characters, If the transparency is egsentially the same as that used
to produce the holcgram, then the field that illuminates the hologram
is essentially the "reference' beam, and the signal bveam (the plane wave)
is reconstructed. This is brought to a focus in the output pluane

(x ) where its presence signifies that ths “test transparency' is

3'Y3
in fact the one used to make the hologram.

~ If the test transparency is different from the original then
the signal in the output plane, Ev(x3,y3), will be of the form of a
correlation of the amplitude tranamittance of test transparency Tr with
the amplitude transmittance of the original transparency < (this type
of operation is often called correlation filtering or correlation detec-

tion). It is quite straightforvard to apply the analysis of Sections 342

3.4.3, 3.4.4 and 3.4.5 to this case, as all that is involved is to

use

2n
-1 = (x,x, + y,¥.)
2¥5) = 57 ” gl e M =

E(x dx, dyy (3.83)

o et o et e ot g
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for the illumination field, instead of ER(xa,yE) a8 given by equation
3.62. We observe that the effects of this substitutics on Ev(x3,y3)
ie merely to change T to 7T, in equations 3,65, 3.66, 3.70, 3.71,
3,72, 3.77, 3.78 and 3.82 (the factor 1* ip these equations iremains
unchanged). We shall not go through the analysis for this cese here,
as it would add little if anything nev.

It might, however, be uteful to make & few comments within
the context of character recognition about the case where we have dif-
fuse illumination of the transparency. Suppose we keep the same dif-
fuser but use a different transparency, with amplitude transmittance
Tp s O {lluminate the hologram. Then Ev(xs,y3) is given by equation

3.82 with 1t replaced by T,

-1
B (xyry) =T |[ pxgry) Tk ¢ % - w4y - )

xN(x ) N'(xl + X, - R, Y, 4 Yy - mr)dxldyl . (3.84)

171 3

It is reasonable to assume that N will be s rapidly varying irregular
function and hence the integral vwill have an appreciable value only
when the arguments of N and N* are very close to being equal. Thie
means that the Ev(xs.y3) will be quite localized, as discussed in
Section 3.4.5. We also observe, however, that Ev(x3.y3) will depend
on how closely Tp and Tt are correlated, and it thue appears that
the system performance may be improved by the use of a diffuser since

the output is still dependent on how closely Tp and t are correlated
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but is nowv much more highly localized in the output plane. The possi-
bility of improvement af the speéprstion of the gystem vhen Airfuse {ilu-
mination is used seems remsonsble from & physical point of viev when we
note that the diffuser results in the rield at the heologram plate due
to the transparcncy being much more spread out than before, and hence a
wuch greater area of the hologram plate i{s utllized.

Another interesting case is where a different diffuser is
used with each test transpacency, as this situation is equivalent to
the situation which would exist if one were to use charscters printed
on a diffusely reflecting surface for input to the character recogni-

tion system. In this case Ev(xS,y3) would be given by
s "
By(x3¥3) = 3¢ ” Tplxpayy) x4 x3 - &1,y ¢ yy - omf)
- _ _
| x“T‘*lfyl)uF (x; *xg - U,y *y, mf)dfldyl . (3.85)

In general, it would appear reasonatle to assume that NT and N* are

uncorrelated, and hencz Ev(x ) will be essentially zero except

3*Y3
when HT = N ., The system thus performs exceptionally well with respect
to recognizing the diffuser, but this is nct in general what is

desired, as what one wishes to recognize is 1 , independent of the
diffuser. Thus, when there is a different diffuser associated with

each test ‘ransparency, the system will not function satisfactorily as

a character recognition device, We observe that the situation is not

improved ty setting N* = 1 in equation 3.85 (i.e., by illuminating

s ——_f e —
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the magter transparency t with u plane wvave vhen we produce the
holoaram), since the factor NT will wtil]l be present and will result
in Ev(x3.y3) being essentially zero., It i{s thus clear thet based on
the assumption that in general NT and N will bé uncorrelated, that
in say practical chearacier recognition system the imput dmis must be in
the form of a trangparency, and if one wvishes to construct a charscter
recognition system where the input data is of the form of characters on
an opaque diffusely reflecting surface (i.e., printed page) then an
auxiliary step is required to put the input into the form of a

transparency.
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CHAPTER FOUR

AMPLITUDES OF THE DIFFRACTED FPIELDS

k.1 Introduction

In this chapter we shall extend the scattering theory of
wavefront reconstruction, as developed in Chapter Cne, to include the
computation of the amplitudes of the diffracted waves, We wvill desl
only with transmission holograms, and will make ugse of both analytical
and experimental techniques to determine the qQuantities which are of
interest.

We shall be in‘erested in dealing with trensmission holograms
involving high spatial frequencies and thick emulsion layers, and hence
wve must take into account the entire emulsion layer. We recall that
this was done in Chapter One, as the grain density vas gpecified at
every point within the emulsion layer. We should note, hovever, that
although the grain density is specified throughout the emulsion layer,
the grain density alone dues not provide a complete description of the
emulsion layer. The problem of specifying the characteristics of the
individual grains will nnt be considered, but instead, the effects
which are related to the detalled nature of the film grains will be
investigated experimentally.

In Chapter One we computed the directicns and phases of the
diffracted plane wavee produced when the grains associated with a par-
ticular periodicity term in equation 1.9 are illuminated by an arbitrary

plane wave. We sav that they were completely specified by the
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vavelength and direction cosines of the incident plane wave and by the
periodicity of the recorded interference pattern in the plane of the
emulsion surface (or in any plane 2 = constant ), The problem which
we wish to consider novw is that of datermining the amplitudes of tha
diffracted vaves,

It ia clear that there are s number of factors which are of
significance with regard to the problem of computing the amplitudes of
the diffracted wavet. They are as follovs;

(a) The amplitude .f a particular diffracted vave will be
strongly dependent on how well the waves scattered by the grains in the
various planes 2z = constant edd in phase. This will be e function of
the particular diffracted order considered, the wavelength and direc-
tion of the illumination wave, the spatial variation of the grain
density throughout the emulsion layer, as well as the thickness of the
emul;ién layevT - . 7 7

(v} The amplitude of a particular diffracted vave will de-
pend on the angular dependence of the amplitude of the vave scattered
by each individual grain. This will, of course, depend on the
characteristics of the particular grain under consideration.

(c) The amplitudes of the diffracted waves will be affected
by lomses due to attenuation within the film emulsion layer and reflec-
tion losses at the various interfaces. The reflection losses are quite
straightforvard to compute but the losses due to attenvation within the
emulsion layer will depend on the film characteristics, processing

procedures, exposure times, ete.
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(4} The smplitusss of the diffracted vaves will depend ou
the amount of light scattered by each grain as well as the totel nuaber
of graing present.

The problem of computing the fields produced when a "volume"
diffraction grating i{s illuminated by a plane wave is not unique to the
particular approusch which has been used here in connection with holo-
graphy. Indeed, it arises in connection with information etorage in
three-dipensional media (8,13) ms well ac in the diffraction of light
by ultrasonic waves (52). We can designate the methods used to cobtain
a soiution of a problem of ihis type (% being either "rigorvus” or
"scalar' in nature. By rigorous ve mean where the solutlon is obtained
by & direct application of Maxwell's equations, We reslize, of course,
that certain ideamlizetions may be nccessary in describing the diffract-
ing volume and certain appreximations may he required to obtain sclu-
tions of the equations, and thus certain "rigorous” methods may be
"more rigorous" than others. Norn and Wolf, in Chapter Twelve of their
book, "Principles of Optiecs” (52) treat the problem of diffraction of
light by ultrasonic waves using rigorous methods, More recently, and

with direct reference to holograms employing "thick" emulsions,
Burckhardt (53) solved the problem of computing the diffraction of a
plane vave at a sinusoidally stratified (lossless) dielectric grating
using & rigorous epproach, where the stratifications we: perpendicular
to the surface of the grating, and where the wave vector of the i{llumi-

nation wave has no component in the direction of the grating lines.
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A evuwawnd approtich, oL the sther hand, refers o the onse
where wo rugard cach sloment of vou.w2 of the grating e & gcurce of

secondary waves (when the grating is illuminated, of course), &and where
the diffracted waves are computed by coherently summing the waves pro-
duced by each element of volume of Lhe grating. This type of approach
was used by van Heerden (13) in connection with his investigation of in-
formation sicrage ln solids. Van Heerden restricted his analysis to

the case where the illumination plane wave is identical to one of the
two original exposing plane waves, and demonstrated that for a very
thick grating, the amplitude of the diffracted field is negligible ex-
cept in the directicn of the other original exposing plane wave. Mazre
recently, Leith et al (B8), in & paper dealing with hclographic data
storage in three-dimensional media, made a careful investigation of the
problem of determining the amplitudes of the diffrscted waves produced
when a holographicidiffraction grating is illuminated with a plane wave,
In particuliar, they considered the case where the propagation vectors
of the two waves which generated the grating and the propagation

vector of the illumination wave all lie in the same plane, and made a
rather comprehensive study of the effect of varying various parsmeters
on the asmplitudes of the diffracted waves. They consideredq both trans-

mission and reflection holograms.

The analysis which we shall employ to compute the amplitudes
of the diffracted waves will be based on the scalar approach, and hence
will be similar in many respects to that employed by van Heerden (13)

and Leith et &l (B8). There will, however, be a number of significant
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i fferences, Uoth in the formuiation and developwent of the sciulions
i analysis. For ¢xamplie, we will consider Lhe
seneral case where the wave vectors of the two original exposing plane
waves and the wave vector of the {lluminaticn plane wave may have
arvitrary directions, being restricted only to being incident on the
hologram plate from the same side (since we are considering transmission
holograms). Furthermore, we shall account for attenuation within the
emiulsion layer, as well as reflection losses at the different interfaces.
Our basic analytic treatment of the problem will consist of
deriving general expressions for the power in the first order diffracted
waves, for the case where the grain density varies sinusoidally with
position, which corresponds to considering the grains associated with
any one of the basic periodicity terms in equation 1.9. This is done
in the following section (Section 4.2). Supporting and extending this
analytical work is an experimental study dealing with holographic dif-
fraction gratings, formed by recording the interference pattern generat-
ed by two plane waves. Due to the nonlinear response of the film, the
variation of the grain density in the experimental gratings is not
sinusoidal. This, however, presents no difficulties as it is easily
handlea within the framework of the analysis of Chapter One. The re-
sult 1S Simp., oy the appearance of additional periodicities which can

be treated independently of the basic pericdicity under consideration,

A4
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waves
In this section we shall be interested in summing the waves
acattered Ly all of the grains within an emulsion leyer having a grain

density of the form

D=D_+D cos[(iil - EQ)-E + 9 - ¢2] (k.1)

for 0 <2< T, vhere T is the thickness of the emulsion layer. We
shall assume that the emulsion layer is illuminated by a plane wave, and

that El » k, , , and @, are constants.
The assumption that each grain acts as an independent scatter-
er allows ug to group the grains in any convenient manner when summing
the scattered waves. A particularly convenisnt way of doing this is to
first sum over x and y and then sum over 2 . We saw in Chapter
One that the field produced by the waves scattered by the grains lying
between 2z and 2z + dz consists of a series of plane waves, whose
directions are specified by equations 1.26 and 1.28. The number of
plane waves produced corresponds to the number of allowable values of
N in equation 1.28, with one additional constraint, which is that when
the variation of the grain density in the transverse direction is sinu-
soidal, the second and higher vraer waves will be absent. This is dis-
cussed in Appendix VI. It can be seen from equation 4.l that this is

the case here, and hence we need consicer only the twe first-order

waves produced by the greins in each infinitesimal layer of the emulsion.
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Wooeaw L Jection L.dlh that Lhe directions of these two
first-order waves depend oniy on the direction and wavelength of the
iliumination wave and the spacing and orientation of the locl of cun-
atant grain density, none of which are a function of 2 . Thus there
will be only two plane waves produced when the emulsion lsave - i1~
luminated by a plane wave. Each of these two plane waves can be thought
of as being & superposition cf a numter of plane waves havin, the same
propagation vectors Rd but different amplitudes and phases. Each of
these component plane waves i5 associated with a different "layer"
within the emulsion volume (i.e., with a different value of 2 ). Thus,
if E{z)dz {is the complex amplitude of the wave resulting from the

scattering by the grains within the region between 2z and 2z + 4z ,

then the total amplitude E of the wave is
T
E = J E{z)dz . {L.2}
o
It will be convenient to write E in the form

Alz) eiG(Z)dz {4.3)

5]
]
2]
O t——3

wnere the functlion g accounts for all factors which are not u functiion
of z,end A and ¢ are real functions.
We shall assume that g is proportional to the amplitude Ei

of the illumination wave and to the number of grains contributing to a

unit area of the diffracted wave under consideration. Thus g will be
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proporxional to DO and to 1/nd , where Ny is the 1z direciion
cesine of the diffrAcled wave., The factor }\/‘ﬂ‘:l accounts for the in-
creased number of grains contributing to a unit area of the diffracted
wave by virtue of the inclination of the diffracted wave with respect
to each elementsl ‘scattering layer' within the emulsion volume,

It {8 clear that wince we are adding the amplitudes of the
wvaves scattered by the individual grains in certain specific directions,
the angular dependence of these waves should be accountsl 1or. We know
from the solution of the problem of determining the fleld scattered by
such simple objects as spheres, ellipeoids, discs, etc. (50) that the
amplitude of the scattered fields often exhibit a variety of lobes and
nulls which are a functicn of the size, shape and orientation of the
scattering particlc as well as of the polarization of illumination
wave, Thus, if the grains are all identical, then the function g will
be proportional to somc function F which accounts for the angular de-
pendence of the flield scattered by a typical grain. If, howevar, the
grains have different sizes, vhapes or orientations, then the angular
dependence of the field scattered by each grain will be different. In
our unalysis we treat each grain as veing identical, and for the case

where the actual silver grains within the emulsion layer are quite dif-

€3

= SnC Gnothér (we Ls uwuailly the case (91)), then we take as
a model an emulusion layer containing identical grains whose character-~
istics represent the average characteristics of the various different

grains.
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In the analysis which will be presented hern, ve will assume
that the averagling of ths radiation pallerns of the different grains is
such that we can regard the function F to be a constant, Thus, we

can write the function ¢ in the form

2 (L.b)

where C 1is a cnnstant.

4,2.1 Attenuation

In this section we wish to determine the function A(z) ap-
pearing in equation 4.3, It is clear that A(z) will depend on the
attehuation of the emulsion layer, which will be & function of position.
Tuus the attenuation suffered by & wave passing through the emulaion
layer will be a function of the particular path along which the attenua-
tion is computed., However, any measurements which we are likely to
make will involve a collimated beam whose diameter is much larger than
the fringe spaecing d , and thus the variations in attenuation will

" and the attenuation can be accounted for by

effectively "average qut,
some "averzge attenuation constant" a . We shall thus assume that the

dependence of A(2z) on the uttenuation can be expreesed in the form

e-oL'(z)

Alz) = (L.5)

vhere L'(z) 4is the total path length vithin the emulsion. The path

length L'(z) {8 composed of two parts, namely the digtance traveled
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by the {llumination vave {n reaching the scattering leyer at the deptu
z mnd the distAlce Lraveied by the diffracted wave in going from the
geattering layer to the edge of the emulsion at 2 » T . It i{s quite

straighttorvard to shcw that

T2
L'(2) = = + 222 (4.6)
0y B3 ’

vhere n, and n  are the 2z direction cosines of Ei and Zd , the

unit vectors pointing in the direction of the illumination and diffrac-

ted waves, respectively (within the emulsion layer).

4.,2.2 Phase Factor

The phase factor @(z) , it is recalled, represents the phase
difference between the wave generated by the grains in the layer be-
tween z and  + &z and the vave generated by the grains in the

- iayer adjacent to the emulsion surface plane, 2 =0, There are two
factors which contribute to the phase difference. First, there vill,
in general, be a path length difference between the two cases by
virtue of the fact that the diffracted wave is “generated" at e dif-
ferent depth within the emiliiun s Iaes, md gsecond, there may be -~
fnclination of the "fringe planes” which will result in a phase shift
due to the resulting "displacement” of the loci of maximum grain
density, which will increase linearly with i . The phase shift due
to a "displacement” of the fringe planes vas computed in Appendix IV
in connection with the problem of translation sensitivity with mul-

tiple wave reference beams as discussed in Chapter Three. The resulits
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of this wnalysis will nut be used here, but instead, an appromch similar

to that us=d in Gection 1.3.% 4o derive ithe gensralized grating equations

will be employed.
Let us begin by considering the grains lying in the layer te- ' !

tween 2z anda 2 + dz ., If we use the ¥i coordinate vystes defiped

s

in Section 1.3.3 then the loci of maximun grain density will be lines
parallel to the x axis, spaced a distance d apart. GSince the di- ;
rections of the two first-order diffracted vaves are defined by requir-
ing that the phase difference between the waves scattered by any two
grainc whose y cocrdinates differ by d be 2n , the phase of the
individual scattered waves in directions of the two first-order dif-
fracted waves will vary linearly with y , bveing of the form 2%1 .
It is clear that since the grain density alec varies with y with the
periocd d , vhen we add up the contributions to the two first-order
diffracted waves by &ll the grains in the layer, the phase of these
diffracted waveg will be equal to the phase of the waves scattered by
the grains located at pcsitions of maximum grain density,
Thus, since we are interested only in a phase difference, wve
can negiect such factors as phase shifts ~¢ = orn scattering and com-

pute the phase factor @(z) strictly in terms -. path length differ-

ences. We can write @(z) 1in the form !

#(z) = & (L(2) - L(O)) (4.7)
i i
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vhere L{(2) 1is the path lemgth from sn arblirary vevefront of the 11l-
lupination pliane wave to an arbitrary vavefront of the diffracted plane
vave under cofislderation, where the scattering takes place from any
grain in a plane of maximum grain density which is located at a depth
2 . Although phade differences of 2K* (N an integer) are not of
gignificance, it is most convenient to compute L{z) wusing the same
plane of maximum grain density, so that #(z) w~ill be u continuous
function.

In cumputing L(z) , we shall make use of the analysis of
Section 1.3.4, end define the path length of interest in terms of the
planes A end B defined theiein. We recall that plane A {s normal
to the wave vector of the [llumination wvave, and is loceted on the inci-
dent side of the emulsion layer, while plane B is normal to the wvave
vector of the diffracted wave under consideration and ig2 located on the
cpposite side of the emulsion layer. In general the region surrounding
the film plate will nave an index of refraction differing from that of
the emulsion layer and its supporting substrate, and hence refraction
will occur at the various interfaces, We find, hovever, that thig does
not affect @#(z) , a. the path length differences which yield @(z}
occur solely within the emulgion layer. Thus vwe can assume, without
loss of generality, that the surrounding medium has the same index of
refraction as the emulsion layer.

The path length L(z) 4s given by equation 1.2k, which ve
shall revrite here with ?0 replaced by ©(z) , the pusition vector

of & point lying in & plane of maximum grain density st a depth 2 :

W R e e AR RS T A el -
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L{z) = ¢, ~ C, ¢+ r(z)e, ~r(z)e, (L8
= -+ £ a
Using cquations 4,7 and 4,8, the expresaion for @{z2) Yecomes
#iu) = 22 [(#{a) - Flo)108, - (Ftz} - Floib-2,0 4.7}
A i 4

where Ai ig the wavelength 2¢ thc {llumiration wave within the
emulsion layer,

The ve~tor ©(z) - r(0) 1is & vector pointing from s point in
8 plane of meximum grain density with 2z coordinate equal to 2ero to
another point in this same plane with 2z coordinate equal to 2z . In
actuality, the vaiue of @#(z) 1is not changed if we simply use & plane

of constant grain density, rather than a plane of maximum grain density.

The planes of constant grain density are defined by

(El - E‘?)'; = {b,iv)

vhere r is the position vector, C is a constant and El and Eq

are unit vectors pointing in the directiors of k, and i? in

1
equation k.1l.

It {8 clear that since both r(z) and r(0) satisty

equation 4,10 for the same vulue of C , ve can vwrite

(El - 52)-[F(z) -r(0)] =0 , (4.11)

It is convenient to express both the vecturs (El -~ e,) and
&

(r(z) - ¥(0)) in the xyz coordinate system, vhich is defined 5o that
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the vector (51 - 52) has no x component (Bee Section 1.3.3). In
this coordinate system we can wrile
5 ® ey?el -8yl cos y -8 fe, - o) siny {b.32)

where vy (s the inclination angle of the fringe planes, defined as the
angle the normal to the planes of constant grain density makes with the

plane of the emulsion surface. Similerly, we can write
r{z) - r(0) = AxEx + Ayiy + zEz , (4.13)

where Ax is arbitrary eand 4y is a functionof y and z . We can
evaluats Ay by using equations 4.12 and k.13 in equation L4.11. Thst

is

S e -l -8 ( L
le, e |by cos v le, eelz sin y = 0 , (L.1k)

and hence
Ay = z tan y . (4.15)

Thus, using equations 4.13 and 4.15 in equation k.9, the expression for

é{z) Dbecomes

d(z) = % L(oxe, + 2 tan v & + 28 )(8, -3, (4.16)
cor
#(z) = 2% [ax(s, - 2,) + z(m, - m,) tan y + 2(n, - n ] (4.17)

Ai d
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vhere {, m and n are the x, y and 2 direction cosines in the xy:z
coordinate system., In this coordinate system, the x direction cosines
of the illumination and diffracted wvaver are equal ‘equation 1.26) and

hence the coefficient of Ax is zero, and @{z2) becomes

#lz) = g%f [(mi - md) tan y + (ni - nd)] . (k.18)

4.2.3 Integration Over 2z - Summing the Fields Generated at Differen®

Depthg Within the Emulsion Layer

Making use of equations 4.5, 4.6 and L.18, the integrand in

equation 4,3 can be written in the form

. ~aT/n
Alz) e1¢(z) = e d vz (L.19)

where w *.-a complex valued function which is independent of 2z :

v =a+idb (L4.20)
where
a = -a(n-l-_ni (h.21)
i d
and
2
b = Xf [(mi - md) tan y + (ni - nd)] . (4.22)

The integral in equation 4.3 is thus easily evaluated to yield the
following expression for the amplitudes of the first order diffracted

vaves:
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The power per unit area in the diffracted waves is given by FP = EE* |

vhich can be expreecsed in the form

o -2aT/n

L
CDoEiEie

ni(a2 + be)

d

2aT aT

(1 + e - 2¢ " cos b7) (h.2h)

P =

where we have used the value of g given by equatiop L.h and set CC®
equal to a new constant C .

We shall not attempt to compute either C or a , but we can
obtain an estimate of the value of a for a particular grating by
making e direct measurement of the atteruetion of the emulsion layer.
The other quantities appearing in the above equation can be computed
L from & knowledge cf the characteristics of the original exposing fields,
the {llumination wave and the physicul characteristics of the emulsion

layer.

4.2, Computing the Diffracted Waves

In this section we shall describe in detail the computational
steps involved in computing the amplitudes and directicns of the two first-
order diffracted waves, when refraction at the various interfaces and
reflection losses are taken into account. We shull assume that the
initial exposing plane waves and the illumination wvave ere given, being

specified in the region adjacent to the film emulsion layer.
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We begin by defining a general reference coordinate yystem,
{x', ¥y', z'} defined so that the smulsion layer occupies the region
3 <«<2' £ T, vwhere T is the thickness of the emulsion layer. The

original exposing field is tuken to be two plane waves, whose propaga-

tion vectors in the region 2' < 0O are given by

k=223 {4.,25)
10 A "10 Y
o]
and
Rpp = 28, (4.26)
°
The unit v:ctors 510 and 520 are specified by their direction cosines
t L) ' t 3 l 1 1 t 1S
in the x'y'z coordinate system, namely 210, By Pyps and 220,
méo, néo . These two plane waves undergo refraction at the interface

betvween the emulsion layer and the adjacent medium, the z2' = O plane,
If n is the index of refraction of the emulsion layer and n, is the
incex of refraction of the region 2' < 0, then the wavelength in the

emulsion layer 1s given by

A o®— ) . (L.27)

The wave vectors of the two plane waves in the emulsion layer are then

of the form

R, = 5 8, (4.28)
- 0 Q

and
R, =& Lg, (k.29)
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e = - - -
The directions of e and e, are found from €0 and ®50 by

applying Snell's Law., Wa find that we nan swpreags ths diraction rcopines

- - . N - - )
of e1 and e2 in terms of those of elO and e20 as follows:
n
(4]
- g 55
~J n LJO {}4-3‘«1
n'o
' — '
my xRy, (L.31)
v Mo 2
' - (2 -n' L,
ag = V1- (D1 - ) (4.32)

where J = 1,2 . Next, we define the xyz cocrdinate sys.em by a ro-

tation of ¢ about the 2' axis (equation 1.16), where

g - 8!
{2y

. {4.33)
B - B

Ve observe that the sume value of ¢ 1is obtained if we use the fields
in the region external to the emulsion layer, since the factor no/n
will cancel in equation 4.33.

The transformation equations for the direction coeines are

given by (Appendix III)

lJ = 13 cos § + mé sin ¢ (L.34)
mJ = -23 sin ¢ + mj cos ¢ (4.35)
n, =n' (4.36)

J J
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where 4 = 1,2 . By virtue of the way the xyz coordinate system im
defined, the intersection of the fringe planes with the 1z = 0 piane
are lines parallel to the x axis. The periodicity 4 1in the 2z s 0O
plane ig the distance {in the y direction betveen planes of maximum

grain density, and is given by {equation 1.15}

d = . {(L.37)

The fringe plane inclination angle y 1s the angle that the normal te¢

tne iringe planes n makes with the y axis. Thus

vy = cos™t (E'Ey) (4.38)

where the sign of y is fixed by equation 4,15 and

_ el-e

n= B e, . (4.39)
The xyz coord.nate system, d , and y along vith the physical pro-
perties of the emulsion layer such as its index of refraction, attenua-
tion, and thickness are adequate to specify the nature of the grating
and hence allow us to compute the amplitudes and directions of the first-
order diffracted waves produced when the grating is illuminated with a
plane wave. It should be kept in mind, however, that ve sre still con-
sidering only the case where the spatial varlation of the grain density
is sinusoldal.

Having specified the nature of the grating, let us now apply
the results of Section 1.3.4 to compute the directions of the twc first-

order diffracted waves produced wvhen the grating is illuminatea with s
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plane wave {there may, of course, be no diffracted waves produced for
certain illumination waves). If the propagation vector of the

illumination wave {5 given by

2n
s £

Tt {(4.40)

io lo

in the region z <= 0 , then it will be given by (after refraction at

the interface at z = o}
k, = =— ¢ (4.41)

in the region z > 0 , vhere

n
= -—9—
Ay . Aio {(Lk.L42}
and
"o
BT Mo (k.43)
", ,
myom 7 ) (L.4i)
n --\/; - (29-)2 (1 - n° ) (L.45)
i n io ) H2

The direction cosines of the two first-order diffracted waves are given

by {equations .26 and 1.27)

b=t (L.46)

NA
i, o

R ’ (L.LT)
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where N has the velues +41 and -1 , corresponding to the two dif-
ferent first-order diffracted waves. The above two =guations specify

n., by virtue of the relationship

d

e 2 2
‘c + m, tn, = 1 . (4.48}

That is

-\/’ N
2 i 2
ng* Vi-t-(5em) ; (L.kg)

vhere we have taken the positive sign for the square root by virtue of
the fact that we mnre interested in transmitted, rather than reflected
wvaves. This completes the specification of the quantities Bys Dgo d
and v 1in terns of the parameters of the original exposing waves and of
the illumination wave, which are assumed tc be given. Thus, once we
assign velues to C, Ds, Eiﬂz, a and T the dif“racted power can be com-
pgtg@, using equation Lk.2h. This will yield the diffracted power at
the boundary planeiof tgé emulsion layer z = T in terms of the il-
lumination powver 313: at the other boundary surface, 2z = 0 , In
practice, however, the illumination power {s specified i{n the region
z <« Q0 and the pover in the diffracted waves is measured after the waves
leave the film plate, and hence it may be necegsary to take reflection
losses into account.

We shall be interested in the case where the film plate con-
sists of an emulsion layer supported by a glass substrate (auch as Kodak

6LG-f glags film plates), and thus there are three interfsces at which
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reflection losses can zeccur. In general, however, the index of refrae-
tion of the substrate is close #nough to that of the emulsion layer so
that reflecticn lossesz at the emulsicn-substrate interfsce can be
neglected. This leaves tWo Interfuces to be consldered, the front and
back surfaces of the film plate.

The quantity which is of interest to us i® the transmlssivity
t of the interface under coneideration, defined as the ratio of the
transmitted pover to the incident pawer. It is shown by Born and
Wolf (54) that the transmissivity depends only on the polarization and
angle of incidence of the incident wave, and on the index of refraction

on either side of the interface. Furthermore, they utilize Snell's Law

to obtain
sin 2 9i sin 2 @t

o . (4.50)

sin \61 + Gt) cos (Bi - et)
_and - . ____ . I _ _ _ _

sin 2 O1 sin 2 Ot

Y. 5 R (4.51)
sin (0i + Gt)

wheére 1, applies to the case where the electric field vector lies in
the plane of incidence and 71, applies to the case where it is perpen-

dicular to the plane of incidence. In the above expressions ©, ia the

i
angle of incidence of the viave incident on the interface and Ot is the
corresponding angle of the transmitted wave after refraction at the in-

terface,
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The transmissivity of the front gurface of the “ilm plate can
be found using whichever of the above expressions is appropriate (or
perhaps both if the illusinetion wave has an eleciric field vector with

components in both directions}, where the angles &, and ©, are

i 4

given Yy

o, » cos™} (n, ) (u.52)

i ig )

and

o, = cos™t (n,) (L.53)

t {
where Do is assumed to be given and ny is computed using

equation 4.45,
Similarly, the transmissivity of the back surface of the film

plate is found using values of ©, and Ot given by

1
0, = cos! (n)) (4.54)
i d '
0, % cos™* (n,,) (Lk.55)
t 4l )
vhere ny is given by equation L.hy and Ny is given by

ny '\ﬁ R S (4.56)
1

vhere n and n, 8are the indices of refraction of the glass substrate
and adjacent medium respectively.

The diffracted power per unit area in the two first-order




128

waves, taking into account reflection losses, 1s thus given by

bes ]
2 -2
cot R OE; 1t .t 8T/ n DT

R - i1+ o - 2% cou Tl (h.5T)

where 1i and are the transmisgivities of the front and back
d

gsurfaces, respectively,

4,2.5 Specinl Cases

In this uection wve shall examine the case where the wvave
vector of the lllumination wave hag no component in tne direction of the

"grating lines” (the x Jirection), snd hence where

iio =0 (L.58)
Then, it follows from equationn b.U3 and L.k6 that
i, *t =0 (L,59)

i 4

and hence the vave wectors of the illumination and diffracted waves all

iie in the y: plane. If we define the angle 0 by

-1l

0 = 1in ~ {m) (L.60)

then

m = gin ¢ (b.61)

and, from equation 4.48 with ld =0,
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no=cos @ . (L.62)

Using equations &.61 and 4,62 in equations 4,21 and 4.22, the expres-

siond for & and b bhecome

1 1 -
n o elSeE, - e ) (6.63)
and
22y ) ( (4.6l
v = 3 {sin G1 - #in @,) tan v + (cos 8, - cos Gd)] .6l)

1

or, usirg simplc trigonometric identities, bv ca: also be shown to be

equal to

3
Ai COs ¥

b = {cos (01 - y) - cos (Od -y} . {(4.65)

Next, let us consider the case where we neglect attenuastion losses
{a » 0) , neglect reflection losaes (‘i'd ®= 1), and let y =0 (f-luge
planes normal to the smulsion surface). Then, equation 4,57 dssumes the

form

2
zcp” EE (1 - cos[g§% (cos &, - cos 04)1)

Po——2d4d (4.66)
cos® O [21 ‘vos 0, - cos © )]2
- d Ai * b a4
2 ,A
or, using the identity 1 - cos A = 2 sin (5) .
2 [ e (nT
CDo Eigi ein [)(1 {cos 0, - cos Cd)]
P = . 5 . (b.oT})
[r: cos O, (coe 01 -~ cos Od)]

we
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The above expression 18 equal, to within a constant, to the results

obtained by Leith et al (8) for the same casas {eguation 21 in reference

8).

k.3 Producing Hoiographic Diffraction Gratings - Experimental

Apparatus and Techniques

In this section we shall describe the experimental apparatus
which was used to produce the i:olographic diffraction gratings referred
to in this and the next chapter. Variations of the basic experimental
setup described here were used in the experimental studies described in
“hapters Three and Five.

Figure 4.1 shows a diagram of the experimental spparatus. The
gource is a heliuin-neon laser and the optical system consists of r beam
splitter, mirrors and lenses positioned sc as to illuminste the film
plate with twc plane waves. The fiim plate ir held in a rotatable
holder, which allows the orientation of the film plate to be varied with
respect to the illumination plane waves, which are fixed in direction
{the angle betwveen them being 30°). The various components are fastened
to the surface of a 3 x 6 foot surface plate, vhich is "flosted" to

uncouple the apparatus from building vibrations.

L,3.1 Source
The socurce is & helium-neon laser having a cavity length of
57 cx, with a 60 cm radius output mirror (Spectra Physics #7259 KT, with

collimation correction) and a high reflectance flat for the cther mirror
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(Spectras Physics #8283). The (W power output at 6328 A° ranged from 1
te b milliwattsz at & beam current of approximately 15 milliamps, depend-
ing on the mirror alignment and on the cleanliness of the Brevester
angle windows.

The laser normally oscillates in more than one axial mode,
and no attempts were made to achieve single mode operation. Efforts
were made, however, to limit the oscillations to the lowest order
transverse mode (by mirror adjustments) and vere in general reascnably
successful. The fact that the laser is oscillating in more than one
mode {mplies that the cohereance length of the laser output is corres-
pondingly reduced, Questions regerding the coherence length were
simply avoided by making the path lengths approximately equal by
suitably positicning the mirrors.

The laser tube was oriented so that the output beam (which is

linearly polarized) had its E vector perpendicular to the surface of

the surface plate, This choice of polarization is advantageous as it
results in higher values of reflectivity for the beam splitter and
avoids depcolarizatior upon reflection from the mirrors. A more import-
ant reason for choosing this polarization arises from the fact Lhat the
film is sensitive only to the total electric field, and with this pola-
rization the electric field vectors of the two illumination waves are
¢olinear. With the other polarization, however, this is not the case
and when the two waves are propagating at righ’ angles to each other
there will be no interference pattern formed (with respect to the

electric field). This is disrussed in detail in Appendix I.
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b,3.2 Mechanical Stebility

Before discussing the steps we have taken to achieve mechanical
stability, let us briefly review the reasons why it may be necessary to
insist on a high degree of mechanical stability in a hologram-taking
epparatus. In recording & hologram, we are in essence recording an ine
terference pattern which is quite sensitive to path length changes. To
be aossured of an adequate recording of the interference pattern we must
require that the film plate remain in register with the interference
pattern to within at least one gquarter of a fringe during the durstion
of the exposure. It is clear that the stability requirements are di-
rectly related to the exposure time, which for the apparatus described
heve ranged from several seconds to more than one hour.

A change in register of the film plate with respect to the in-
terference pattern can be caused by either a movement of the film plate
or by a shift of the interference pattern. While li. effect of the
former is propcrtional to the spatial frequency of the interference
pattern, the latter is not. Indeed, a path length change of A will
cause a shif. of one fringe regardless of the fringe spacing. Such path
length changes can be caused by similar changes in the position of the
reflecting elements in the optical system that encoivnter the beam after
it has been divided (beamsplitter and mirrors). Changes in the optical
path length that occur prior to the beamsplitting operation are not
important.

In the apparatus described here, all components are rigidly

mounted and securely fastened to the surface plate. The surface piate,

i o | b 2t ot e et
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which weighs approximately one thousand pounds, provides structural
rigidity as well as inertial damping for the system. The surface plate
i6 igolated from mechanical vibrations in the floor of the building by
supporting it o1 a layerea structure of felt, neoprene sponge rubber,
plywood and low pressure rubber inner tubes. Messurements made by
J. Azmuth (55) on this system in the 20-20,000 CPS range have shown
that the peak surface plate mcceleration is approximately 1/28 that of
the nearby floor. Isolation from acoustical vibrations is accomplished
by covering the components with felt covered boxes. This also reduces
the effects of air turbulence.

The apparatus, as described above, was found to be very
stable, Holograms were obtained using it in which the exposure times
exceeded one hour, Holograms were also obtained with the table

"unfloated,” with exposure times of the order of five minutes.

L.3.3 Optical Components

The nptical components consist of the beam splitter, mirrors
and the two collimating lens systems. The beam splitter is simply a
L 1/2 inch diameter quartz plate, .2L2 inches thick, with a wedge
angle of 47 seconds. It yields two primary beams of equal intensity
when the angle of incidence is 75 degrees, with LO% of the power being
lest due to multiple reflections. The mirrors are high quality front
surface mirrors (Davidson Optronics Model D615). It was found that
ordinary front surface mirrors (coated select plate glass) often exhibit

what is referred to as the orange peel effect, which is evidenced by a
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mottled appearance of the reflected bheam.

The tvo collimating lens systems wers identical, each con-
sisting of a 16 mm microscope oblective lens and a 6" apariyre 19"
fucel length lens, placed so that their focal planes coincided, It wes
found that invariably dust or other small particles would be present on
the surface of the microscope objective lens or on the mirrors, and
that these particles generated diffraction patterns that caused rapid
amplitude variations across the beam. These effects were removed by
placing a small aperture, or "pinhole,' at the focal point of the
microscope objective lens, The operation of the pinhole is readily ex-
plained in terms of e low pass spatia. fiitering operation, using the
analysis contained in Appendix V. It was found that pinholes with a

diameter in the range from 10 to 30 microns were quite satisfactory

(the pinholes were obtmined from Buckbee Meers Inc.). Accurate position-

ing of the pinholes was required (to within at least .00l inch in all
three directions) and this was achieved by using three-dimensional
micropositioners (Kulicke and Soffa Model 200).

Although the low pass spatial filtering operation eliminated
the rapid amplitude fluctuations across the beam, there was still a
slow variation due to the decrease of amplitude vith radius which is
characteristic of the lowest order transverse modc of the laser. This
produced a decrease in the power of an order of magnitude at a radius

of 3 cm when & 16 mm microscope objective was used.

e i 4 A e e
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L,U Messurement of the Power in the Diffracied Waves - Experimental

Apparatus and Technigques

In this section we shall describe an experimentai apparatus
whose function is tc measure the direction and power of the various
diffracted waves which are produced when s holographic diffraction
grating is illuminated by a ccllimated beam. A diagram of the appara-
tus is shown in Figure 4.2, from which we gee that the appsratus con-
sists essentially of a source to illuminate the gratiag and a detection
system to measure the power in the diffracted waves. The photomultiplier
can be rotated about the vertical axis only, and thus we ure restricted
to measurements in which the illumination wave and the diffracted waves
all have their propagation vectors in the same (horizontal) plane.

The device used tc hold the grating and photomultiplier ig a
converted spectrometer; The grating is mounted on a rotetable tadble
which in turn is mounted on the spectrometer table. The use of this
additionsl rotatablc table, whose rotation with respect to the illumina-
tion beam can be measured to within 5 minutes of arc, allows the angle
of incidence of the iliumination beam to be read directly, without
being dependent on the angular position of the viewing telescope.

The photomultiplier, an RCA T10?, is mounted on the body of
the viewing teleacope of the spectrometer, which can be rotated to pick
up the various ditfracted orders. The spectrometer i{s of quite high
quality, and the angular position of the viewing telescope, and hence
the photomultiplier, can be read to within one minute of arc. In mount-

ing the photomultiplier on the viewing telescope, the objective lens
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vas retained but the eyepiece agoembly was replaced by s smsll sperture.
d By making this apartuyre sufficlentiy small, the angular sensitivity of
the detection system could be made equal to the mccuracy of the gradu-
ated circle, which was one minute of arc. 1n practice, however, we
found it convenient to use a larger (.078" diameter) aperture, which
ylelded an angular sens’tivity on the order of 20 minutes of arc.
The source was a helium-neon laser vhich produced m linearly
polurized output beam at ,6328u . A Spectra Physics polarization ro-
tator was used to enable us to illuminate the grating with any desired

linear polarization.

b.4.l Photomultiplier Detection System

[ A phage sensitive detection system weas employed which aliowed
the detection of very low signal levels. 7he output beam of the laser

*'*““*vas'chcpped’ax*nbout“iﬁa

CPS, with the chopper providing a rererence -
signal &t the same frequency, which remains in phase with the chopped
laser beam. The output signal from the photomultiplier is detected by
a lock-in amplifier (Princeton Applied Research Model JB-5) which utili-
zes the reference signal generated by tlie chopper to discriminate against
' _ that portion of the signal from the phntomultiplier not in a narrow
frequency band centered at 103 CPS.
Wi.at was desired was the atility to detect signals having a

wide range of pover levels, from 1 milliwatt (the power level of the

direct laser beam) down to 10'6 or 10T mw. Rather than have the {nput

to the detection system vary over such a large range, this range was
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achieved by the use of neutral density filters, with the input to the
photomultiplier varying only over one order of magnitude. Wwhat was

done was to position the photomultiplier so us to pick up the dirent
laser bteam {vith no grating in place) and then set the photomultiplier
voltage and lock-in amplifier gain so that the meter on the lock-in
anmplifier read 100 with & neutral density of § in front of the photo-
multiplier (five N.D. filters of N.D. = 1.0}, Weaker signals could then
be read by sppropriate removal of neutral density filters. This gave s
reliable range of readings over 60 db, with an additional rankge of 10 db
corresponding to meter readinge from 1 to 10 with no neutrai density
filters in the beam. This method has the additional advantage that the
data is automatically normalized w!th respect to the power in tne
illumination beam.

The sensitivity of the system could be {ncreased in two wvays,
either by increasing the photomultiplier voltage and vorking at lover
signal levels or by increasing the laser power. This latter method, of
course, is most desirable but one is limited by the power output of the
lasers that one has available,

A number of different helium-neon lagers vere used in the
setup, and there vas a fairly vide range in the stability of the output
pover between the different lagcers. The instabilities were observed to
be of two types, gslovw long term drifting of the power level and rapid
noise~like fluctuations. The long term drifte could be corrected by
periodically resetting the photomultiplier voltuge and the rapid

fluctuations could be allowed for in reading the meter, provided they

.-
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vere not too large, It (¢ estimeted that together these effects

1imited the accurecy of the readings to abtout 'S% for the vorst cases,

b.h,2 Relating the Measured Power Ratic to the Amplitudes of the

Diffracted Waves

In the analysis of Section 4.2 it was assuzmed that the grating
vas essentially infini{te in extent and vas i{lluminated by a plane wave
vhich was likewise infinite in extent. The amplitude of the diffracted
plane waves vere then computed and the power per unit area was computed
by taeking the square of the amplitude of the diffractsd wave. In the
experimental apparatus described here only & portion of the grating is
illumineted, and this with a collimated beam whose amplitude varies
across the beam, The ratio of the total pover in the diffracted bteam
to that in the illumination beam i3 what is measured, and from this we
wish to determine the pover per unit erea in the diffracted beam,
normalized with respect to the square of the amplitude of the
illumination fieid.

Let us define (x', y'), (x,y), and (x", y") to be %he truna~
verse coordinates cf the illumination beam, the grating and the diffract-
ed besm, respectively. The amplitude of the illumination beam will be
somwe function of x', y', vhich we shall denote by Ei(x‘. y') , and

the total power in the illuminatiun beam will be of the form

Py * ¢ J J EiE: dx' dy' (4.68)

x‘ yl
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vhere ¢ is the appropriate constant and the integration extends over
the ¢ross sectional area of the {1llumination beam. Likevige, if
Ed(x“, 7"} s the ampiitude of the diffracted fieid under noneidera-

tion, then the totsl power in the diffracted beam {8 cof the form

0 u. H] t
J EE, dx" dy , {k.69)
¥

wvhere the integration extends over the cross sectionsl urea of the dif-
fracted beam and the constant ¢ {4 the same constant appearing in
equatior. 4,66 . We assume that the characteristics of the grating are
constant over the illuminsated ares und hence that the variation of Ed
with x", y" 1s due solely to the variation of Ei across the illum-

inated portion cf the grating. We can thus write P4 in the form

{
Py = oK J J EiE: dx" ay" (L.70)
¢ yll
where
L ]
EE
K = EQFQ . (L.71)
17

We observe that *he {lluminstion beam and the diffrected beam share the

game area of the grating, and that wve can write

. ’ ~
P, * cony J J E\E, dx dy (b.72)
ry

L 1)
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and

py = cokn, I J ElE; ax dy . (4.73)
xy

where ni and ﬁd are the z direction cosines of the illumination

and diffractad beams, respectively. The quantity which is measured,

pd/pi , is thus of the form

P n, E.EY
e . fe e )
Py it

We thus have the choica, in comparing the measured power ratio pd/pi
with the computed power as given by equation 4,57, of converting the

measured data by multiplying by the factor ni/nd or »f computing

n. P
o rather than P/E,E* . In general ve shall do the latter, since o
n;‘E;E: i

it merely requires & simple change in the computer pirogram, Thus, what

we will wisn to compute is

-2uT/nd
Ctr,t. e

P= 1 d2 5 (1 + 28T _ 2¢%T o8 »T] |,
nindka + b°)

{%.75)

where we have absorbed the factor Di in the constent ¢ .
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4.5 Daperimental Study of Holographic Diffraction Gratings

In this sectioa we shall consider the dependence of the pover

diffracted irto the first-order waves on the direction, wvaveiength and
polerization of the illumination wave, as well as on the charsacteris-
tics of the pnrticular grating being considered. In particular, we
shall discugs a number of measurements that were made and compare the
experimental dats with the theoretical values computed using the
analysis developed in Section 4.2. A brief description of the results
of some of these reasurements was reported in a previous publication (9).
The application of the analysis of Section k.2, which deals
with the case where the varistion of grain density is sinusoidal, to
the case of a holographic diftractior grating, is quite straightforward.
According to the analysis developed in Chapter Orne the grain density of

w hologram formed by recording the interference pattern generated by

_two plane waves can be written as a sum of gsinusoidal terms,; the lowest

crder of which generates the two first-order diffracted waves. By
virtue of the assumption of the neglect of multiple scattering,

the waves generated by the grains associated witn the different
sinusoidal terms can be dealt with separately, and hrice the problem
reduces to the problem considere: in Section 4.2. We observe, however,
that we have not as yet specified the constant Do appearing in
equation L.l and thuz we can only compute the power in the diffracted
vaves to within ¢ multiplicstive constant. In comparing theoretical
and experimental results, this constant will be chosen sc that the

twn cases agree at some convenient point.
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The holographic diffraciion gratings that are described in
this section vere made using Kodak 649-f 3 1/b x & 1/4 x ,QkO"
glass filmw pletes, znd were processed in the same manner. The pro-
cessing procedure wes:

5 minutes in d-19 developer at 70 f

30 seconds in a 1.65 percent acetic acid stop bath

5 minutes in a fixing solution (757 cc paper fixer,

355 cc mmmonium thiosulfate, and 3,030 cc distilled
water)

50 minute rinse in distilled water.

Constant agitation was maintained throughout and the rlztcc were air

dried.

4.5.1 Orientation Sensitivity

We have seen in Section 4.2 that the amplitudes of the
diffracted wvaves depends on how well the waves generated by the grains
in turn is a function of the direction of the illumination wave. In
thia section we shall consider a specific grating, and we shall mea-
sure the power diffracted into the first-order waves as a function of
the direction of the illumination wave. We will then use the analysis
developed in “ection 4.2 to compute the diffracted power, and then we
shall compare the experimental and theoretical results.

The grating which will be coneidered was made using the
apparatus discussed in Section 4.3, with the two exposing plane waves

(with A = .6328u) being incident on the film plate at 8, = + 15°

io
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and Uy o® - l5°. respectively. This produced a grating whose fringe
planes a:e perpendicular to the emulsion surface (y » O) and vhose
fringe spacing d in the plane of the emulsion surface is egual to
1.223y (equations 4.37 and k4,61).

The grating was then {lluminated by a collimated laser beam
{x = .6328u) and the ratic of the pover diffiracted into each of the
two first order diffracted waves +o the illumination power was measured
a5 & tunction of the direction of %he {llumination beam. The prop-
agation vactor of the illumination wave was restricted to lie in the

plaae of the two original exposing waves (i.e., £, = 0) in order

ic
that the wave vectors of the iliumination wave and diffracted wvaves
would all lie in the gsame plane,

The experimental results are shown in figure 4,3, where the

pover ratio is plotted as a function of © the angle of incidence

io’

{defined by equation 4.61) of the illumination wave prior to refraction

at the emulsion air interface. Threeié;;eriﬁéﬂiél cu;ﬁg; are ;hovﬁ,
one for the zeroth order (the direct transmitted beam) and the other
two for the N = . 1 first-order diffracted wave - one with the
emulsion side facing the illumination beam and the other with the
emulsion side away. The N = + 1 curves are not shown as they were
simply the misror images of the N = - 1 curves with respect to the
origin. In all three cases the illumination beam was linearly polar~
ized with its electric field vector perpendicular to the plane of

incidence,

Also shown in figure 4.3 is the theoretical curve, computed
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using the analysis of Section UL.2. The quantity vhich was computed
vas pd/pi y 84 given by equation 4,75, which is the ratio of the
total pover in the Aiffrscted wave under consideration to the total
pover in the illumination beam. The calculations vere done numeri-
cally, using & digital computer and plotter, with points being computed
every 10th of g degree over the range of sio of interest.

In order to carry out the calculations, it was necessary
to assign a value to the constant ¢ appearing in equation L.75, as
well ag to specify a(the attenuation constant), T{the emulsion
thickness), und n(the index of refraction of the emulsion layer).
The constant C we3 chosen 50 the maximum value of the computed value
of pd/p1 vas equal to the maximum measured value. The attenuation
constant a was estimated from the attenuation suffered by the trans-
mitted portion of the illumnation beam, at 910- 0, and found to be of
the order of .lu~% for the grating under consideration. The emulsjion
thickness of the 649-f plates befure processing is 15u , but shrink-
age occurs dui;ng the processing procedure, with the result that the
emulsion thickness T is scmewhat less then 15u. The index of
refraction of the emulsion layer was taken to be equal to that of the
gelatin matrix of the emulaion layer, 1.5« (G66).

The valuec of T used to generate the theoretical curve
shown in figure 4.3 was 12y . This value was determined by comparing
a number of similar computed curves (with T = 5,6, ..., 15u) with

the experimental data shown in figure L.3., It was observed that the

[V
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effect of varying T was to change the number and width of the various
maxima, with the width decreasing and the number of secondary maxima
increasing with increasing T . The location of the central maxima
did not vary with T to any significant extent.

The éffect of o on the shape of the theéoretical curve was
also investigated, and it was fcund that the differerice betwveen a = O
and a = .10 was slight, amounting to a slight filling in of the
nulls and a slight suppression (less then 2db) of the secondary maxima,
The difference in the region of the central maximum was negligible.
A8 a {8 increased the filling in of the nulls and the suppression
of the secondary increases, and becomes rather pronounced at a = 1y
The shape of the central maxima remmins essentially unaffected as do
the secondary maxima on either side of the central meximum.

An examination of figure 4.3 shows that the agreement of the

theoretical curve and the experimental curves is guite good in the

region ofrgbe ceﬁtrﬁlrmaximﬁg.i Outside thiéiregioﬂ the agréémént is
not quite a8 good but the general nature of the curves i8 the same.
The difference between the case where the emulsion side faces the beam
and the case where the emulsion side is away from the beam is consider-
able, and appears, perhaps, to be due tc a decrease of grain density
with depth, due perhaps to attenuation within the emulsion layer during
exposure of the film plate (the amplitude attenuvation constant for an
undeveloped 649-f emulsion layer was measured and found to be .022u“l)
and or a decrease of development activity with depth during the pro-

ceagsing of the film plate. These factors are outside the scope of the
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annlysis presented here wnd will not be considered further.

The shape of the zeroth-order curve can es#sily be explained
by attenustion within the rmulsion layer mnd reflegtion losses at the
interfuces, except for the two humps at Oio' 1 15°. These anomalies,
which have alao Leen observed by leith et al (8}, do not appear tc
be explained by the analysis presented here.

We observe that the maximum diffracted power occurs whon
eio. i 150, depending on which diffracted order is being considered.
Thege are the two angles of incidence of the originsi expcsing piapre
waves. We shall consider this point in some deteil ghortly (Section
4,5.3), but before doing 85 we shall examine the polarizetics depen-

dence of the ratin of thie pover diffrected iato ihs first-order waves

to the power in the illumination bean.

4,5.2 Polarization Deneadence -

In ordar to examine the polarization dependence of the
power diffractad into the first-order waves, measurements were made
with the electris field vector perpendicular to the plane of incidence
and parallel to the plane of incidence, The reeults, for the case
where (ne emulsion side is facing the illumination beam, are shown in
rigure b4, In making these measurements, the polarization was changed
at each value of Oio with a polarization rotator (figure 4.2).

The curves shown in figure 4.4 contain the effects of re-
flection losses at the different interfaces, which differ for the two

polarizations. Figure 4.5 shows these same two curves with the re-
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flection losses divided sut, «4ith the pover ratio normalized to one

al ihe maNimum value. The conversion of the dalm was done with the
aid of & digital computer, and sumounted to dividing sach data value

by the transmisgivity of the front and back interfaces, which vere
computed for each value of Uks uging the analysis outlined in Section
b,2.4. 1In making these calculaticns the index of refraction of both
the emulsion layer and the supporting glass substrate vums tagen to be
equal to 1.52, snd multiple reflections were neglected,

We observe from figures b.L and 4.5 that the difference
between the two polarizations is rather small for the partlcular case
which we have considered, There {8, however, an obgservadle difference
and it may vell be that for a graoting having a different fringe spacing
d or a differenv thicknees T thet this difference may be greater.
Burckhardt (53), in his paper deeling with the diffraction of a plane
vave at 8 sinuscidally stratified lossless dielectric grating, pre-
dents o rigorous solution of the prodblem of computing the amplitudes
of the diffracted wvaves when the fringe planes are perpendicular to
the emuidion surface and when the propagation vector of the illumi-
nation wave hus no component in the direction of the grating lines.
fils results indicate that the difference in the maximum diffracted
pover for the two polsrizations increases with incresging T and de-
creasing d. Burckhardt also shows that in all cases the diffracted
pover is greatest when the electric field vector is perpendicular to
the plane of incidence. We see from figures 4,3 and 4,4 that this is

the case for the grating under consideration here, with the maximum
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dirfracted power being about 1/2 db  greater for the case where the

PR R
LRI o 3

igld vector is perpendicular %o the plane of incidence. A
gimilar result vas cbtained with the emulsion side awvay frof the {llunie
nation beam,

we recaii that in the amnalysls developed I Sectiovn 4.2,
the polerization of the {llumination wave entered in the analysis
through its effect on the individual scattered wuves produced by the
various graina within the emulsion layer. We made the approximation
of neglecting the angular dependence of these .ndividual scattered
waves, a8 wvell as the effect of different polarizations of the illumi-
nation wave. It appears from the experimental results shown in figures
L,3 ang 4.4 that the neglect of the polarizetion dependence is quite

a reasonable approximation, at least fo- gratings whose thicknesses

end fringe spacings are of the order of those considered here,

L.5.3 Oratings with Inclined Fringes - Bragg Condition

We recall trom cection 1.3.5 that when we illuninate 4
grating wvith one of the two original exposing plane waves, one of the
tvc-first order diffracted plane vaves has the same direction and
phase (except for m phase factor of -n ) a8 the other original ex-
posing wave, We now wish to show that the analysis developed in
Section h.2 predicts that the power diffracted intp that particular
first-order wave is a maxinum for this case,

The power per unit area in the first-order iiffracted waves

is given by equation 4,24, and is or tbe form

L LT
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vhere we have absorbed the various multiplicative constants ir the new
constant <' . It is clear that if a =0 (so that a = Q) and the
factor l/ng ie presumed to be slowly varying, then P will be a
maximus where b = 0 ., The quantity b is given by equation 4,22 for
the general case (no restrictions on the direction of the illumination

wave other than o, > 0) and by (equation 4.65)

b = ;i—gﬁa—-; [cos CH ~y) ~ cos (04 - v)] (4.77)

for the case when the prcpagation vector of the illuminaticn wave lies

_in the plane of the wave vectors of the two original exposing waves

(i.e., vwhen z.q = 0). It sufficies to consider the expression for b
given above, as we are interested in the case where the illuminaticn
vave is the same as one of the two original exposing waves.

The fringe plane inclination angle y 1is given by

8, + 0
y= 2% (4.78)

where 0, and 9, are the angles of incidence (0 defined by equation

2
L. 61) of the two original exposing plane waves after refraction at the
emulsion air interface. Using the expression for vy given above,

equation L4.77 becomes
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Let us now consider the case where we let oi = 01 . We ure interested

in the first-order wave for which 0, =0, (equation 4.37, 4.UT and

L.61). We observe that substitution of 0O, = 0, and 0, " o, in

equation 4.79 yields b = O . The same result is obtained for
91302 and Gd=01.

Thus, apart from questions regarding the effect of o, a, and
D4 in equation 4.76, we observe thet the maximum diffracted power is
cbtained when we illuminate the grating with one or the other of the
two original exposing waves, depending on which of the two first-order

waves is being considered. The effect of a, a and nd on the location

- of the maximut does not appear to be too significant for the gratings

which ve have considered, judging from the numericai calculations we
have made, and will not be considered further here.

The above results are equivalent to the results obtained by
Leith et al (8), and are in agreement with the results of van Heerden
(13) and Burckhardt (53). As has been noted by a number of authors
(8,9,53), the above results can be stated in tesms of Bragg reflection
from the planes of constant grain density. Bragg's law, or the Bragg
condition, is simply a statement of the conditions on the angle of
incidence, wavelength and distance between the pa-allel planes for

which the waves reflected from the Aifferent plaies add in phase. We

- ——— o Y s it sn
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can express Bragg's Lav in the form (67)

v
4

sin Vi =

fof

A
T (4.80)

where Yi is the angle the jillumination wvave makes with the parallel
planes, A is the wavelength of the illumination wave {within the
astructure), d' is the distance between the planes, and N is an

integer.

It is straightforvard to shov that when o, equals either

i

Gl or 02 , the Bragg Condition is satisfied. OSuppose we let

o, = 01 , then ¥, 1is given by

i i

'1 = 61 -y (4.81)

or, using equation 4.78 for y ,

8 02
Y TF (u.82)

In order to have Bragg reflection, the angle of reflection of the dif-

fracted wave must equal the angle of incidence of the illumination wave.

This requires that Vd = -Vi , where

¥g =04 -1 . (4.83)

14 pecall that vhen 6, = © O, = 02 for the first-order diftrracted

i S |
wave of interest. Thus

Y =0

4 PR (L.84)
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or, using equation 4,78

M]Hc:'

8
V:-—z—
2

a : (4.85)

and hence ?d --*i as required. The distance d4' between the planes

of maximum grain density in given by (equation 1.62)

. A
d 6, = 5, (4.86)
2 sin (-—-Er-—ﬁ

ari hence, substituting the expression for d' given above in equation

L.80, we see

sin vy, = N gin

i (L.8T)

An examination of the above equation and equation 4.82 shows that the
Bragg Condition is satisfied, which is what we wished to show. A simi-
lar result is obtained when we let ei = 02 .

A number of different holographic diffraction gratings wvere
made having different fringe plane inclination angles y . These
gratings vere made using the experimental apparatus described in
Section k.3. The bear spread angle 910 - 620 (prior ‘o refraction)
was held constant at 30 degrees, and the film plate holder was rotated
in steps of 10 degrees to provide a range of values of vy , as shown
in Table 4.1.

The variation of the power diffracted into the N = -1 first-
ord-- was measured as a function of O for each of these gratings,

ie
and the results are shown in Figure L.6, with the pover ratio Pl/pi
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beiug normalized to 1 at the maximum value for each grating. The solid
curves are the correésponding theoretical curves {computed using eguation
4.75 and the analysis cutlined in Section 4.2.4), which have been shifted
horizontally to yield the best fit, and where the constent C appearing
in equation 4.75 hes been chosen sc that the maximum computed value of
pl/pi is equal to 1, The amount of horizontal shift for each curve is
shovn in the last column of Table 4,1,

We observe that, apart from the observed shift of the loca-
tion of the peaks, the theoretical curves are in excellent agreement
with the experimental data. The broadening of the curves with increas-
ing v 1is due to the increasing value of 4 . The cause of the shift
in the location of the peaks is not clear, but may be due to emulsion
shrinkage effects. Another possibility is that the .ctual index of re-
fraction of the emulsion layer might be different from 1.52, which vas
“the value used in -the computaticns: (Our numerical computstions shov
that changing the index of refraction changes the location of the peaks.
Neither of these two effects was investigated in detail and ve shall

not consider these points further here.

k.5.4 Varying the Wavelength of the Illumination Beam

In the measurements discussed in the previous sections, the

source was a helium-neon laser, and hence the valuz of A was fixed
at .6328u {in air). 1In this section ve shall describe measurements made
with other values of ) . Experimentally, this was accomplished by re-

placing the laser sourre gshown in Figure 4.2 with a low pressure
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mercury arc lsmp and using monopass spectral filters to isolate the
various spectral lines. A small aperture and collimator were used to
provide a collimated beam with which to iilluminate the holographic dife
fraction grating. Using these techniques the ratic of the power dif-
fracted intwu the N = -1 first-order wave to the iilumination power
vas measured with )\ (air) equel to .5T90u, .SL60u, 4358y and

.L0L6y, for the grating used in Sections 4.5.1 and 4.5.2 (d = 1.223u,

y = 0).

The experimental rssults are shown in Figure 4.Ta, vhere we
have alao plotted the curve for A = .6328u . We observe that the
peaks are shirted to smaller values of oio for shorter wavelengths,
as predicted by the analysis of Section L.2. Computer generated curves
shcwed that the peeks occurred at 9,," 15°, 13.9°, 13°, 10.4° and
9.7° for X = ,6328u, .5790u, .5460u, .4358u and .LOL6L, respectively.
Cbeservation of the experimental curves shown in Figure 4.7a shows that
the location of the peaks are within 1/2 degree of the predicted valuess.

We also observe that there is a difference in efficiency for
the differeant wavelengths, the efficiency being greatest at A = .6328y.
Furthermore, there is a broadening of the curves with shorter wave-
lengths. This broadening is not predicted by the theory if one assumes
that the index of refraction is the same for all wavelengths. However,
it can be accounted for by using larger values of the index of refrace
tion in the computations. This iz illustrated in Figure 4.Tb, where
we have plotted the experimental curve for A = ,LQb6uend theoretical

curves computed using n = 1.5, 2.0 and 2.5. No shift of the peak

- e e e 08 b Wty |
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occurs vhen we vary ©  wvhen the fringe planes are perpendicular to the
emulsion surface {y = 0). We see from Figure L.7b that an index of re-
fraction of the order of 2.0 provides a reasonable fit, which suggests
the possibility that the film emulsion layer may be gquite disperaive.
We shall merely note this possibility here und shall not consider this
point further, as it is outside the scope of our treatment of the

problem.

L.5.5 Orientation Sensitivity - Grating Lines in the Plane of Incidence

In the previous sactionhs, we have restricted our experiments
and numerical computations tc the case where the propagation vector of
the illumination beam had no component in the direction of the grating

lines (i.e., = 0), in order that all the propagstion vectors would

iio
lie in the sume plane. The analysis developed in Section 4.2, hovever,
is not limited tc this case, and in order to verify the general

validity of the analysis an experiment was performed where the wave
vector had components in the direction of the grating lines,

What was done was to rotate the grating by 90° about the 2
axis from its normal position on the rotatable table shown in Figure
L,2, which results in the grating lines being parallel to the horizontal
plane, Rotating the rotatable table then results in lio being varied,
vith B being equal to zero. With this change, the wave vectors of
the {llumination wave and diffracted waves no longer lie in the same
plane, and it was necessary to modify the experimental apparatus so that

the photomultiplier could be positioned to pick up the diffracted waves.

e e e e b o Te =




17h

¥hat was done was to edd ancther degree of rotational freedom to the
photomultiplier holder, so that in addition to a rotation about the
vertical axi=, rotation could be cohleved swboutl & horizontal axis
vhich pasaas through the {lluminated portion of the grating.

The experimental results are shown in figure 4,8 for the
same grating that was used in Section h.1 (y * O, a » 1,22%) .
The ratio of the power diffracted into the N = ¢+ 1 first-order vave
to the pover in the illumination team is plotted against ¢ , which

is defined by

£, =siny . (4,88)

Also plotted is the thecretical curve, for three different emulsion
thicknesses. The agreement is best for T e llu. The point ¢ = O

corresponds to the point O, = O in figure L,3 (emulsion side fore-

io
vard), and the cbserved difference in pl/pi is due to the fact that

different portions of the grating were illuminated in the two cases.
This was due to the design of the holder, and could not be avoided
without cutting the film plate, which vas not done,

We cbserve from figure 4L.L that the variation of pl/pi
with ¢ {8 much smoother then with eio , and that the central peask
and secondary maxima are absent. Our numerical calculations show
that this same general behavior is to be expected for other gratings
having different parameters, but that the general shape of the curve

vill vary consideratly, and in some cases vill be a minimup at ¢ = O

{this has been observed).
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k.5.6 Efficiency

1
PEET SEvepem

We have seen in the previous sections that for a given grat-
ing, source, and diffracted order, there is a particular direction of
the illumination wave for which the diffracted power is a maximum,
This “optimum" direction of illumination, or "cptimum illumi-ation

condition,” is the same for similar gratings (same d, vy, T) , bdut
one finds that the diffracted power that is obtained under such
conditions is not necessarily a constant, but may vary from one grat-
ing to the next, depending cn the exposuve and processing procedures
used in producing the various gratings.

It is of interest Lo examine the effect of varying the
exposure and processing procedures on the efficiencies of the dif-
ferent gretings. This was done experimentally, usirg gratings similar
to the one discussed in Sections L4.5.,1, L.5.2, 4.5.4, and 4.5.5
(@ = 1.223, y = 0). What was done was to make a number of such grat=
ing fhere the exposure time was varied to provide a range of ex-
posure. The efficiency of each grating (i.e., pl/pi for optimum
illumination conditions) was then measured and plctted sgainst the

attenuation suffered by the zeroth-order beam (pO/pi at @, = 0)

io

and the results are shown in figure 4.9. Recalling that we estimat~

the attenuation constant o ty

P.
a = = Ln (=) (4.89)
P

We can view figure k.9 as beirg equivalent to a plot of efficiency

Le . ia
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vs o (where p; 18 t.e cover in the illumination beam, p,
ig the power in the tranamitted portion of the illumination beam, at
normal incidence, and | 18 the emulsion thickness).

The lower ~urve in figure 4.9 corresponds to the case where
the film plates are processed in tue normal manner, as outlined in
the beginning part of tection 4.2, This curve can be interpreted in
a qualitative way with the aid of equation 1.9, the grain density
equation. There appesr: to be two competing processes that occur as
ve increese the expoz.re. First of all, we increase the number of
grains which contribute to the first-order diffracted waves which
increasesthe power diffracted into the first-order waves. At the same
time, however, we increase the total number of grains present which
increases the attenuation of the emulsion layer. Initially, the first

factor dominates and the efficiency increases rapidly with increasing

-exposure. The film response slowly begins tc saturate and the co-

efficients of the other terms in equation 1.9 begiu increasing faster
then the term contributing to the first order diffracted wave. The
efficiency then begins to level off and finally begins to decrease,
and when the film response has become completely saturated, a further
increase in exposure results only in & corresponding increase in
attenuation, as evidenced by the straight _:.ne portion of the curve.
This description is supported by the upper curves shown
in figure 4.9, which corresponds to the case where the gratings are
bleached (using Kodak Chromium Intensifier). Here the attenuation

has been removed and the saturation of the rilm is clearly evident.
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It is interesting to note that the efficiencies of the
bleached gratings are about & Tector of twu greater wvhen the emulsion
layer 15 etill] wet, following the bleaching process. This appears to
be due to the chemistry of the bleaching process, rather than to the
increased thickness of the emulsion layer due to swelling, as resoeking
of the emulsion layer after it had dried did not result in an increase
in efficiency. In addition, it was observed that bleaching of the
very highly exposed plateg resulted in rather severe light scattering,
but that scattering was not a problem for the more lightly exposed
plates.

The gratings used to generate the curves shown in Figure 4.9
were made using approximately equal power in the two original exposing
waves. Gratings were made using unequal power in the two waves and

they were found to be less efficient, as is expected.

4,6 Discussion

In this chapter we have extended the analysis of Chapter One
to include the computation of the amplitudes of the first-order dif-
fracted waves that are produced by the grains associated with a
particular periodicity term in equation 1.9. The analysis was then
applied to the case where the hologram was a holographic diffraction
grating, for which a series of experiments were carried out, and the

experimental and analytical results were found to be in good agreement.
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We found that there are tvo optimum directions of jllumination
that maximize the pover diffracied into the first-order waves, one
direction being associated with each of these waves. These directions
were found to be (apart from relatively small shifts that were observed
experimentally) the directions of the two original exposing plane
waves that were used to generate the grating. That is, if one
illuminates the grating with one of the two original exposing plane
waves, then the amplitude cf the first-order diffracted wave, which
corresponds to a reconstruction of the other original exposing wave,
is a maximum,.

It was seen that the sensitivity of the diffracted power to
the direction of the illumination wave increases with increasing
emulsion thickness and decreasing periodicity 4 , with the result
that for a "thick" grating (d/T < .2) the amplitude of the firat-
order diffracted wave corresponding to the reconstruction ofrthe
original exposing wave will be much greater than that of the other
first-order wave.

It is thus clear that for the case of a more general
hologram, the best reconstruction of the original signal beam will be
obtained when the illumination beam is the same as the reference beanm.
If the hologram is "thick," then the power diffracted into the
reconstruction of the signal beam (i.e., the virtual image) will be
much greater than that diffracted into the real image beam, vhen the

illumination is done with the reference bean.
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CHAPTER FIVE

DUPLICATIOR OF HOLOGRAMS

5.1 Introduction

The idea of duplicating holograme has been a subject of con~-
giderable interest for a number . reasons. First of &ll, if one has

a "master hologram,' then oftentimes one can produce copies of com-
parable quality without the need for the more elaborate apparatus re-
quired to mske the original hologram. Holograms have been success-
fully duplicated in a number of laboratories (45), and indeed, it ap~
pears that at least part of the interest in the duplication of holograms
arises froa the fact that & certain amount of experimental research can
be done in this area without the need for the somewhat specialized ap-
paratus required for making holograms. This was the case here, vhere
the initial experimenta. work in the field of holography (Marech 1965)
consisted of duplicating a borrowed hologram using both & helium-
neon laser and conventional light sources of different spectral width.
More recently, during the summer of 1966, a more compre-
hensive study of the duplication process was made, with particular
emphasis being placed on the case where the hologram must be regarded
as "thick," in the sense that the periods of the fringe patterns are
small compared to the emulsion thicknesg. It was determined, frcm a
careful study of the duplication cof a very simple type of hologram,

the holographic diffraction grating, whose properties were reported in

a previous publication (9), that the duplication process should be

—— et < o 0
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vieved as that of making & hologram of a hologram. Described in

i
[ 3

these terms, Lhe varicus dspects of copying holograma can be treated
in a straightforvara and consistent manner,

Various aspects of the ides of making & hologram of & hologram
have beeu considered by other researchers. F. B, Rotz and A. A.
Friesem (47) demonstrated the interesting result that if one takes a
hologram of the real jimage of a hologram, then the real image of the
nev hologram doesn't exhibit any of the poseudoscopic effects normally
associated with the real image. In the experimental arrangement used
by Rotz and Friesem, the film plate for the second hologram was located
sufficiently far from the original hologram so that it was illuminated
only by the real image field. The reference beam was provided in the
normal manner. D. B, Brumm, in a recent publication (48), developed
this idea further, and pointed out that one could effectively duplicate
hplggpa@s {n th;s mapner, and that it was not necessary to separate the
tvo film plates, as the zeroth-ordef beaﬁ can provide the reference

beam, and either the real or virtual image beams can provide the signal

beam.

5.2 Duplication of "Thick" iransmission Holograms

In this section we shall consider the duplication of trans-
mission holograme wvhere the spatial frequencies of the recorded inter-~
ference patterns are gufficiently high such tha* periods of these
patterns are small compered to the emulsion thickness. In such a case,

ag was discussed in Section 2.2.2, the variation of the grain density
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with the depth must be accounted for, and the concept of average ampli-
tude lransmission becomes of questicnable use, We shall consider the
case of duplication of lov spatial frequency holograms briefly in
Section 5.6, where we shall treat them 8s u limiting case of theé case

considered here.

5.2.1 Duplication Process

The basic duplication process can te described in scomewvhat
genersal terms ss that of exposing s film plate to the field produced
by illuminating a hologram in some manner. We would normally think of
the film plate as being in close proximity to the hologram, but this
need not always be the case. It is clear that the nature of the dupli=~
cate hologram will depend primarily on the nature of the field that
exposes it, This, in turn, depends on the nature of the field used t.
illuminate the master hologram, the characteristics of the master holo-
gran, and the location of the duplicate hologram film plate with re-
spect to the master hologram. It is thus apparent that what is in-
volved in a detailed description of the duplicaticn process is the
solution of the general problem of specifying the diffracted fields
produced when & hologram is illuminated by some arbitrary field. Cer-
~ain aspects of this problem were considered in the previous four
chapters, and we shall apply the analyses, result~, and conclusions
contained therein to the solution of the problem at hand. In particular,
we shall make frequent use of the material contained in Chapter Four,

anc will develop our treatment along the lines of the analysis con-

e
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tained in Chapter One.

5.2.2 Production of sn Exact Copy

Tt is ¢lear that the duplicate hologram will be dan exact copy
of the criginal only if the exposing fields are identical tu those used
to produce the original hologram. This can, to a large extent, be
wchieved provided that the original reference beam waa a single vave,
preferably a plane wave (this requirement must be satisfied if the vir-
tual image is to be an accurate reconstruction of the signal beam, as
discussed in Chapter Three}. Then, as we recall from Chapters One and
Two, illumination of the master hologram plate with the reference beam
will yield a reconstruction of the signal beam. This reconstruction of
the signal beam, plus the transmitted portion of the illumination or
reference beam, are then essentially the same as the originel exposing
fields.

There are, however, additional fields produced which corres-
pond to the real image, second order images, and other fields as dis-
cussed in Chapter One. There is alvays a certain amount of backgrouand
scattering also, as well as fields due to multiple reflections. All
these additional fields can be neglected provided that their amplitudes
are gufficiently small with respect to the two fields of interest. We
sav in Chapter Four that this is usually the case for "thick" trans-
mission holograms, provided that we illuminate with the reference beam.
As was discussed there, this arises by virtue of the fact that vhen ve

illuminate with the reference beam, the waves scattered bty the grains
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at various depths within the emulsion layer that contribute to the vir-
tual Image sdd ln phase, while thuse contributing to the other lmages
do not. The result i{s that the amplitudes of the real and higher order

images may be sufficiently small such that they can be neglected.

5.2.3 Effects of Varying the Geometrical Characteristics of the
Illumination Wave

In the previoug section we considered the case vhere the
paster hologram plate was illuminated with the reference beam, sssumed
to be a laser generated plane or spherical wave, of the same wavelength

A as that used to produce the master hologram plate. In this section

‘
|

ve shall deal with the case vhere the illumination vave is still a
laser generated plane or spherical wave of wavelength A, but inci-
dent at a different angle of incidence or having a different radius
of curvature, or both.

Ve oﬁall find it conveniént to deal with the problem using the
description of the holographic process developed in Chapter One. This
allows us to determine the effect of varying the geometrical charac-
teristics of the illumination wave on the total field by a careful
examinatior of the effects of changing the angle of incidence of &
plane wave on a holographic diffraction grating, since we can consider
the hologram to be composed of a "linear" sum of such gratings, as
discussed in Chapter One. Looking at the problem from this point of
view, we need consider only the case vhere the {llumination wave is a

plane wave, as at any given point we consider a spherical wave to be
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approximmted by s plane vave, We should bear in mind, howvever, that
while a change in the direction of a plane wave {llumination bean
brings about the same change in angle of iacidence of the illuminstion
wave st all points on the fiim piate, this will not be the case for a
apherical wave illumination beam.

It i3 clear that changing the angle of incidence of s plane
vave used to illuminate a holographic diffracticn grating will change
the umplitudes and directions of the varicus diffracted waves, It is
shown in Section 5.3, where the duplication of helographic diffraction
gratings is considered in detail, that in general only the two first-
order diffracted wvaves and the transmitted portion of the illumination
wave need be considered. Furthermore, it is shown in Section 5.3.1
that although the directions of the rirst-order diffracted vaves are
changed by varying the angle of incidence of the illumination wave,
the periodicity of the interference pattern generated by either of
the two first-order diffracted waves and the transmitted portion of the
ililumination wave is a constaat in any plane parallel tn the plane of
the master film plate. This constant is independent of the angle of
incidence of the ifllumination wave and its wavelength, and is equal
to the pericdicity of the master holographic diffraction grating in
the plane of the emulsion surface, This means that the periodicity in
the plane of the emulsion surface of the duplicate hologram will be
the same as that of the original (provided the duplicate film plate {3
placed in a plane parallel to that of the original during the dupli-

cation procesa). Since this is the per. licity that determines the
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directions of the diffracted waves which are preduced vhen the dupli-
cate holagrem fg (lluminated, thisz maung that yith respest to tne
directions of the diffracted waves produced, the duplicate gratings

will be an sccurate duplicate of the original.

These resulta, while derived ror the special case of a holo-
graphic diffraction grating, can be extended to more general types of
hologramg. There is, hovever, one modification which muet be made.

We recall that with the holographic Aiffraction grating, illuminasted
by & plane wvave, there was no need to specify the distance between

the duplicate film plate and the master film plate. This wms the casge
because the diffracted waveg were all plane waves, and hence the inter-
ference pattern is the same in any plane parallel to the emulsion sur-
face. With the more general type of hologram, hovever, we may have
spherical waves, and while they may be considered as "locally" plane,
the interference pattern may very considerably with the distance from
the master hologram plate. Thus we must add the additional constraint
that the duplicate film plate be in close proximity to the master film
plate, §{f the periodicity of the duplicste hologram iz to be equai to
that of the original.

Thus, if the above mentioned condition i{s satisfied, then
we would expect, for example, that if we duplicate a pictorial holo-
gram vith a laser-generated plane or spherical wave, the reconstruction
of the object produced by the duplica®e holograr should look essentially
the same us that produced by the original hologrem, regardless of the

geometry of the illuminstion vuve used {n the duplication process {with-
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in reasonable limitaticns, of coursc). This wag chsarved to be the came
by Landry (4€), who reported that cither parallel or dlverging laser
iight produces similar results in the copying of holograms.

et us now go back and consider the effect of varying the
geometrical characteristics of the fllwnination wave on the amplitudes
of the various diffracted waves. As mentioned earlier, we ure inter-
ested in the case where the emulsior layer of the master hologram plate
must be regarded as "thick,” and hence, as was seen in Chapter Four,
the amplitudes of the various diffracted waves are highly dependent con
the angle of incidence of the illuminetion wave. In addition, we re-
call from Chapter Four that the efficliency of a hologram depends on
the ratic of the amplitudes of the signal and reference beams. For the
cage of the simple two-beam holographic diffraction grating, we saw

that the optimum ratic was unity.

In the case where we are duplicating & hologram, we have

transmitted portion of the illumination beam (the zeroth order). We
can think of each of these first-order beams as interfering with the
zeroth order to yield a separate hoiogram enccded on the duplicate
bologram film plate. The efficiency of each of these "holograms"
depends on the ratio of the amplitude of the corresponding first-order
beam to that of the zeroth order., In genersl, the amplitudes of these
first-order beams will be considerably below the value required to

give meximum efficiency, so that the higher the amplitude of either of

essentially three beams Lo consider, the two-first order beams and the
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the twa firat-order beame, the higher will be the efficiency of jts
corresponding "hologram."

It may appear at [Tirst glence that the separation of the
duplicate hologram into two “holograms' is somewhset artificial, since
we have shown that both c¢f these holograms yield identical diffracted
images. A cioser examinatioun of the situation, however, will show
that this separation is quite meaningful when the emulsion layer of i
the duplicate hoiogram film platc must be considered a8 "thick.,” In
such a case, the complete spatial dependence of the interference pat-
terns generated by the two first-order beams and the zercth-order beam
is of importance, rather than just the periodicity in the front surface
plane cof the emulsion layer.

It is clear that since the directions of the two first-order
beams are quite different, the two corresponding interference patterns

will also be quite different, even though they have the same periodi-

city in the plane of the emulsion surface. The net result is that o

when the emulsion layer of the dupiicate hologram is "thick," the
amplitudes of the waves diffracted by each of the two holograms encoded
on the duplicate hologram film plate will be highly dependent on the
angle of incidence of the wave used to illuminute the duplicate holo-
gram, and that this dependence will be different for the two holograms.
There will thus be two angles of incidence at which the "Bragg condi-
tion" is satisfied for any given diffracted order produced by the
duplicate hologram, one for each of the two recorded interference

patterns. This is shown experimentally to be the case in Section 5.3.1,

sse
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wherc o careful study was made of the duplicetion of s holographi-
4iffractiocn grating.

We recall that the relative amplitudes of the two first-crder
beams are highly dependent on the angle of incidence of the beam used
to illuminate the master hologram plate, and hence the efficiencies of
the two holograms which form the duplicate hologram may be quite dif-
ferent. In fact, if the amplitude of one of the two first-order dif-
fracted wvaves is much greater then that of the other, then the effi-
ciency of the corresponding hologram will be sufficiontly high com-
pared with tnat of the other hologram such that only it need be con-
sidered. This is usually the case, as was meutioned in the previous
section, when the master hologram plate is illuminated with its ref-

erence beam.

5.3 Duplication Experiments with Holographic Diffraction Gratings

Ve h;§e seenrtﬁnt fhe natuférdt the duﬁli;ate hdiéé;;; &;ﬁéhaﬁ;
as does any hologram, on the characteristics of the exposing field.
The nature of this exposing field, of course, depends on the nature of
the master film plate and the nature of the fleld used to illuminate
it. In this section we will consider the case where the master holo-
gram plate is a holographic diffraction grating, and where the dupli-
cation apparatus is as shown in figurec 5.1. With this apparatus, we
are able to illuninate the master hologram with a laser-generated plane
wave at various angles of incidence. For reasons of experimental and
computational convenience, we gshall deal only with the case where the

propagation vectors of the original exposing plane waves (which
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generated ihe master hologram), the propagation vector of the {llumi-
nating wave, and the normal to the Tilm piate, all lie in ithe same
plane (the horizontal plane), The grating lines are thus normal to
the horizontal plane, and the y axis of the xyz coordinat: system
defined in Secticn 1.3.3 1ies in the horizontal plane, The generalized
grating equations given by equations 1.26 and 1.27 reduce to the ordi-
nary grating equation, which is given by

NA

sin 6, = sin 0, + =3 (5.1)
where (equation 4.60)
0= sin"t {m) , (s.2)

m being the y direction cosine of the wave under consideration.
Equation 5.1 can be applied either to the fields inside or outside
the film plate, provided the appropriate value of A is used (this
follows directly from equations 4.42 and L.Lk). In this chapter we

~ shall deal primarily with the fields outside the film plate, andi we
shall drop the subscript o on 91 which was used in Chapter Four
to designate 0i pricr to refraction at the emulsion air interface.

In the experimente that will be described in this secticn,

the holographic diffraction gratings that are duplicated ali have the
same fringe spacing, d » 1,223 microns, and all have their fringe
planes perpendicular to the emulsion surface (y = 0). These gratings
vere produced with the apparatus shown in figure L.l, with the two

plane wvaves being symmetrically incident at 0O =t 15° . The vave-

i
length of the tvo plane waves waa, 6328 .
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2:.3.1 Varying the Direction o tLe Illuminativn Wave

The effect of varving the angle of incldsnce £, of the
i
plane wave that illuminates the holographic diffraction grating (i.e.,
the master hologram) {s twofold. First of w«ll, the directiona of the

diffracted waves are g function of ¢ as specified by equation 5.1,

i’
and second, thc amplitudes of these diffracted waves are strongly

dependent on @ as discussed in Chapter Four. The power in each

{1
of the two first-order diffracted waves, for an illumination wavelength
of 0.6238 ; , is shown in figure 5.2 as a function of 6, for the
holographic diffraction gratings under consideration. In figure 5.2
we have used the values for the case where the emulsion side is away
from the beam and the polarization is perpendicular to the plane of
incidence, as this is the configuration used in the duplication of

the gratings. The second-order diftracted waves, whose puwers are of

the order of two orders of magnitude smaller ther those of the first-

order waves in the range of Oi of interest, arc neglected. We will
also neglect waves arising from reflections at the various inter-
faces,

The field which exposes the duplicate film plate thus consists
of three plane waves, corresponding to the transuitted portion of the
illuminating plune wave and the two first-order diffracted waves pro-
duced by the holographic diffraction grating. Recalling that the
holographic diffraction grating vas originally produced bty two planc

waves incident at 0, = ¢ 15°, it follows that letting 0, = ¢ 15°

i i

in the duplication process will result in a duplicate hologram that is
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esgentinily “he same as the master hologram, the helaographic diffrac-

. . . o
tion grating. This can be seen Lo be the oupe by lastting Qi » 1%

in cquatlon 5.1, Then the tnree plane waves that illuminate the dupli-

cate hologram film plete will conzist of the transmitted portion of

the {1lumination plane wave, which is ircident on the duplicate riim

plate at 150, and the two first-order diffracted waves which are in-
cident at - 15" and 50.7° . The relative amplitudes of the two first-
o

order diffracted waves are found from figure 5.2 with Gi =15,
and it is5 seen that the N =] first-order diffracted wave, which is
incident on the dupiicate hologram film plate at - 150, is consid-
erably stronger than the other first order. Thus, except for the con-
siderably wesker beam at 50.70, the field that exposes the duplicate
film plate 13 essentially the same as that which was used to produce
the original holographic diffraction grating, and hence the duplicate
hologram will be an accurate reproduction of the master hologram. A
aamber of duﬁliénte aratings ;ere made using therapparatus shown in
figure 5.1 (with o, = 15%) and they were observed to be very similar
to the original, as expected. Both the original and dupliicate gratinegs
were made with Kodak 649f film platea, 3 1/h x & 1/h x .00 size, and
were processed in the same manner. The basis of compariscrn between

the original and duplicate gratings was taken to te d, the fringe
spacing, as determined by applying equation 1.19, and the f{ringe plane
orientation, as determined by measuring the amplitudes of the two first-

order diffracted waves as a function of Oi . The various duplicate

gratings exhjbited differert efficiencies, which depended orn the rela-

e

PO TOR O

r



SERETTIAE IO . T

o

196

tive ampiitudes of the two principal exposing waves, as well as the
total exposure. Thede factors will be disrussed in more detail in the
next section,

Let us now consider the case where the illumination wave has
gsome angle ol incidence cther than Oi = 150. This will mean that
the field that exposes the dupllicate film plate will consist of a dif-
ferent set of plane waves than {in the previous cese. Thelr directions
and magnitudes are found from equation 5.1 and figure 5.2, respectively.

Let us consider a specific cese, for example, G)i * 0, This
case 18 of special interest, as it would be the contiguration most
likely to be used by someonc who might view the duplication process as
that of making & "contact print." For 8, = 0 the second-order dif-
fracted waves are quitc negligible, and we need only consider the three
waves corresponding to thenroU\érdef il.e,, ihe trnnsmitted éortion
of the illumination wave) and the two first-order waves, It is seen
from figure 5.2 that these two first-order waves will have egqual ampli-
tudes when G, = O, but that this amplitude is considerably smaller

i

than that of the primary firstorder vave vhen 0, = ! 15° (4t should
be kept {n miné that power, rather than amplitudes, are plotted {n
figure 5.2;.

The directions of the two diffracted first-order waves are
found from enustion 5.1, snd are equal to ¢ 31.174° . The field
that exposes the duplicate hologram film plate thus consists cf a
relatively large amplitude planc wave incident at G‘ a 0 (the trans.

mitted {llumination wvave) and two relatively small amplitude plane
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wavss {of equal amplitude) incident &t o, = ¢ 31.174°. The result-
irg interference pattern, vhich is what is recorded to form the dupli-
cate hologram, thus consists of the interference patterns of each of
the two first-crder waves with the zeroth-order wave and the pattern
-orresponding to the interference of the two first-order waves with
each other. Because of the relatively large amplitude of the zeroth-
order wave, the first two or tle above mentioned interference patterns
will be the most important, and if the amplitudes of the first-order
waves are sufficiently small compared with that of thezeroth-order wave,
their mutual interference pattern can be neglected. In such a case

the duplicate grating can be considered as the superpcsition cf two
gratings. It is clear that in the special case under consideration
these two gratings have the same periodicity d' in the plane of the
emulsion surface. This periodicity, or fringe spacing, can be computed

using equation 1.19. We find
d' = 1.223 microns (5.3)

which is the same as that of the '"master" grating.

The above result is not merely a coincidence for the special
case considered, but is a consequence of a general rule which can be
stated as follows:

The periodicity ~f the interference pattern which is generated
by the zeroth-order wave and either of the two first-order waves, in
any plane parallel to the plarne of the master grating, is a constant

independent of the iliumination angle 0i and the illumination wave-
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leng.h X and this constant is equal to the periodicity 4 of the

CRYE--M

This can be demonstrated with the aid of equatioms 1.19 and - .
£.1. Writing equation 1.19 in terms of the angles of incidence E

and of the twc plane waves which generste the duplicate

g 2
il i2
grating, the periodicity d' of the duplicate grating can be expressed

in the form

d' = A (5.4)

lsin Gil - 81in eiZl

where 3 1s the wavelength of the illumination plane wave. In the

-

case undsr consideration 011 and 912 are the angles of incidence
of the transmitted portion of the illumination wave and either one of
the two first-orier waves, respectively. The angle Gil is arbitrary

and the argle 012 ig specified by equation 5.1. That is

3>
-
t
W
e

sin 012 - sin Oil = t

where d 1is the periodicity cf the master grating. It is clear that

? zubstitution of equation 5.5 in equaticn 5.4 yields

a' = d (5.6)

which is what we wished to demonstrate.
Returning to the duplicate grating for.aed with Oi = 0,

it i3 clear that its periodicity in the plane of the emulsion surface

is the same as that of the master grating, and hence as far as the
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directions of the diffracted waves it produces when flluminated, it ig
equivalent to the master grating. The basic structure of the duplicate
grating, however, is considerably different from that of the master
grating. In the case of the master grating, the fringe planes are
normal 1o the emulelon surfece, and there is only a single set of them.
The duplicate grating, on the other hand, has two sets of oppositely
inclined fringes, corresponding to the interference patterns of the

two first-order diffracted waves with the aaoth-order wave.

These two sets of fringe planes have the same perlodicity in
the plane of the emulsion surface, and hence the fields scattered by
the grains associated with either set of friuge planes add in phase in
the same directions. Thus, although there are two distinct sets of
fringe planes, there will only be two first-order diffracted waves
produced by the duplicate grating, and as was mentioned earlier, the

directions of these diffracted waves are the same as for the original

maéter gfat;ﬁé: 777777777777 S
Tne amplitude of either of the first-order diffracted waves
sroduced by the duplicate grating is clearly equal to the sum of the
amplitudes of the waves contributed by the two sets of fringe planes,
Because these two sets of fringe planes are inclined in opposite
directions, the relative contributions to the total amplitude of either
of the two first-order diffracted waves varies greatly with the angle
of incidence of the illumination wave. In fact, there are essentielly
two distinct ranges of Gi where either cne or the other cf the two

sets of fringe planes dominates aad the other can be neglectea. This
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: is verified by the experimental results shown in Figure 5.3, vhere the
normalized power diffracted into the N =-1 fi{rgt-order b2am is

plotted against 9i + The apparatus used to make these measurements is

shown in Figure 4,2, and a discussion of the experimental details for
this case would be essentially the same as that given in Chapter Four,
and hence will be omitted.

The curve plotted in Figure 5.3 {s neen to consist of two
similar curves, one centered at 01 = 1° and the other centered at
0i » 34.5° , with a transition region in between. The curve centered

at Oi = 1° ig essentially due only to the fields scattered by the

grains in the fringe planes associated with the original exposing waves

at Gi = 0° and 0, = <31,1T4° . Similarly, the curve centered at

i
Gi = 34.5° is essentially due only to the fields scattered by the grains

in the other set of fringe planes, which are associated with the original

1

*‘*““*"““’“‘*exposing*vaVOS*at‘*0;‘3”0**and”*GI‘=‘31717h°‘T“*We*observe*that"the“mnxtma“*“‘* *******

are shifted slightly from the valuss (0° and 31.2°) of 0, that we

would expect on the basis of Bragg reflection from the inclined fringe

planes. A similar shift was observed and discussed in Chapter Four, in

S B

the section dealing with holographic diffraction gratings with inclined

fringes (Section 4.5.3),

5.3.2 Effjciency .

It is often of interest to compare different holograms on the

basis of how "bright" a reconstruction can be obtained, with a given
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illumination power. While a meaningful comparison may be difficult
between two entirely different holograms, such i2 not the case vhen we
have duplicates of the saue master hologram. In the special case of
the holograpuic diffraction grating, ccaparisons of thie nature are
particularly straightforward, as was seen in Chapter Four. A conven-
ient basis ol -omparison is the efficiency, which we define as the
ratio of the power diffracted into the primary first-order beam to the
pover in the illumination beam, when the "optimum" illumination angle
61 is used. For example, consider the grating corresponding to fig-

ure 5,3, It has an efficiency given by
€, " 1.5 x 1073

while the e¢fficiency of the master hologram plate from which this grat-

ing was dupliceted is seen from figure 5.2 to be

. We observe that in this case the cfficiency of the duplicate grating
18 much lower than that of the original. This is not alvays the case,
however, as it is quite poesible to have the efficiency of a duplicate
gratirg exceed that of the original. Furthermore, the original grat-
ing which yields duplicate gratings of the highest efficiencies is not
necessarily the one with the highest cfficiency itself.

These statements follow directly from the results of Section
L.5.6 of the previous chapter, vhere ve sav that the efficiency of a

two-beam holograpiic diffraction grating depends primarily on the ratio
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of the amplitudes of the two beams and on the total exposure. For a
given amplitude ratio, there is some optimum exposure that will yield
maximws efficiency., The maximum efficiency is grestest for an ampli-
tude ratic of unity, and becomes less and less as the ratio departs
farther and forther from unity.

Let us return tc the cage where we wish to duplicate a holo-
graphie diffraction grating of the type described in the previous sec~
tion (i.e. d = 1,223u, fringe plenes normal to the emulsion surface).
The variation of the power in the zeroth-order beam and in the two
first-order beams with Gi as shown in figure 5.2 for a particular grat-
ing of this type is typical, with differences betveen different grat-
ings smounting to displacements of the zeroth-and first-order curves
in thc vertical direction.

In all cases (except possibly for bleached gratings) the

amplitude ratic is closest to unity when @, 6 = ¢ 15°. and thug the {1-

i

__lumination angle which gives the most accurate duplicate gratings also

gives the most efficient duplicate gratings.

5.4 Duplication with a Non-lager Source

The first duplication of holograms was done by Gabor (5),
using "conventional" or "non~laser” light sources. Indeed, the forma-
tion of & "positive" (or duplicate hologram from our point of view )
was an important part of the holographic process as described by Gabor.
Since the holograms which Gabor was dealing with involved fairly low
spatial frequencies, the duplication process consisted or essentially

making a "contact print” of the original hologram. Later, with the

|
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invention of the laser, it became practical to make holograms having
much higher spatial {requencies, and these, too, have been duplicated
using conventicnal light sources in what appears tu¢ be a contact print
itype of process (b5, U6). It was observed (45, 46), however, that it
was quite important to have close contact betveen the master hologram
wud T ouwupuctute f1im plnte . ntherwise no reconstrucuion can be ob-
tained from the duplicate hologram which is produced. This and other
effects are easily explained in terms of the description of the dupli-
cation process as that of producing & hologram of a hologram, rather

than as the foruation of a contact print.

$.4.1 Coherence Length and Path Length Differenc s

In the previous sections ve assumed that the illumination of

the master hologram plate was done with a laser generated plane or

spherical wave. Thus, although the duplication yrocess has been
shown to involve the recording of the interfersnce patterns generated

by the two first-order teams and the zerothe-order beam, it was not
necessary to take into account path length differences, as the co-
herence length of the illumination field could be considered as guite
long. We ghall now consider the case vhere ve have a point acurce

which hag some finite, perhaps large, spectral width, and hence may

have a very short coherence length. In such a case, if the path length
differencee exceed the cohereiice length of the source, then there will
be no interference pattern, and hence no duplicate hologram produceg.

There is, uf course, no specific path length difference at
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which point the interference pattern sbruptly disappears, but rather,

! uz disouzssd by Borp and Wolf {65}, the disappearance is graduai. The
[, coherence length LC ia defined in such a way as to give a measure of

i

[

the path length difference for whiech the interferenne patterny is e-=nn

tially wone, we evidencel Uy s very low value of the visibility of the

e g i

interference fringes, and {s given by
L. =Ty, (5.7)
where 8)o and X0 are the spectral width snd the mean wavelength of
the source, in a vacuum. In comparing path length differences with Lc,
we must use the optical path length ruther than the geometrical puih
; length.
In general, there will be & range of path length differences

. associated with a hologram of a fairly complex nature, and thease path

length differences will depend on a nuaber of fuctors, which, 1oa

i

o dad
B

i

certajh extent, are under our control. In examining this problem, it

i is convenient to use the approach developed in Chapter One, as the path

length differences associateu with each periodicity of the master holo-

gram plate can be computed svparately, in a straightforvard manner.
This allows us to consider the effect of varying certain parameter. 'n
the duplication process indepsndently of the detsils of any particular
hologram.

Thus, le. us consider the case where we wish to cuplicate a
holozraphic diffraction grating, of periodicity d, using & point

source vhose mesn wavelengtih is $o. We shall asaume, for cbmput&-
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tional convenlence, that the grating (s illuminated with a collimated
beam, and that the projection of the propagation vector of the {llu-
mination beam on the emulsion surface plane i{s perpendicular toc the
interference fringes. In this case, the propsgation vectors of the
diffracted wavez lie in the same plane g3 that of the illumination
vave, and their directions are specified by the simple grating equa-
tion

NA
oA

d

sin v, @ ain 3, 4 . (5.8)

In writing the abuve egquation, we have assumed that 8l is suffi-
ciently small such that we can neglect :he angular dispersion which
it produces. If this is not the case, then ve must take into account
the range of A and apply the grating equation separately for eaci
vavelength.

The interference patterns wvhich are of interest are the two

Qnich are generated by ;ﬁe interference of the first=-order waves with
the zeroth order. If the coherence lcength of the source is relatively
ghort, then these two interference patterns will be localized in the
immediate vicinity of the emulsion layer of the master hologram plate,
the holographic diffraction grating. Thus, {f one is to be able to
record these inteérference patterns, and thus obtain a duplicate holo-
gram, then the emulsion layer of the duplicate film plate must de
placed within the region where the interference patterns exist. In
practice, this is usually accomplished by placing the two emulsion

layers in contact, and {liuminating the master holugram plate from the

S
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back side. It i§ not possible, however, to reduce the path length
differences to zeoro, s the emulsions tocmselves have o finite thick-
ness. Furthermore, it may not be possihle to reduce the geparation
distance to rere, sspecially i{f an index matching fluid is placed be-
tween the two amulsion layars.

The optical path leugth difference arising from a soparation
of the two emulsion layers by an amount &, neglecting emulsion thick-

nesses, is shown {n Appendix VII to be given by

conmué " cos 9; L (5.9

9 ' )
3L = né {{tun N tan Od) sin 0} +

vhere n 418 the index of refraction of the medium between the emulsion

layers and 8{ and @é are related to 01 and 8y by Snell's law:

1 N
t -
sin Gi .- sin 01 (5.10)

e g
L] -
sin Gd L] n sin Od

(5.11)
The values of Ud. wvhich are of interest, correspond to ¥ = t] in
equation 5.8, and are specified once the angle of incidence Oi of the
illumination wave is specified.

We cobserve that the path length difference, while being pro-
portional to 4, 1is also & function of Ne? ﬁi. n, la, and d. The de-

perdence of AL on these quantities was investigated rnumerically and

gome typical results are shown in figure 5.4 (for N e -1, n w 1.0),
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The corresponding curves for N = 41 are found by replaciug wi by
-ui, We cbaerve that for o given film emulsion separstion digtance
¢ higher spatial freguencies (smaller 4} and longer wavelengths
yield larger values of AL, In addition, {f d is small {of the order of
ia) then 5y iz ztrongly dependent on 5, It iz seen from figure 4.4
that (for § = ~1) 4y increases very rapidly am 91 approaches gome
minimun value, which is a function of %o /d. This minimum value of
0i corresponds to the smallest value of @i from which a solution for
Bd exists {equation 5.8 with N = -1}, and thus ic the solution of

sin 0, = do - 1 . (5.12)

d

Similarly, for N = +1 there will Le a maximum allowable value of ai

which is specified by

sin 9, = == + 1 . {5.13)

We observe that if d< Ao then there will be no value of o
for which both first~corder diffracted waves exist, and neither first
order will exist for Gi = 0, Thus, if the illumination wave is
brought in at normal incidence {which is the standard procedure for
meking 8 "contact print"), then {t will be possible to obtain a
duplicate hologram only if d> 2o, This is independent of the co-
herence length of the source.

On the other hand, if 4 1is large compared with Xo then,

s . 1+ = ol
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for n = 1.0,
A
. 8,70, .

AL = 3 i) (5.10)
and we sz that the path length differences invoived with either first
order decrease very rapidly with increasing d. It is8 thus clear why
hologrars involving low snatiasl frequencies (less than 200 lines/mm)
are relatively easy to duplicate uring what appears to be a “contact

print" process, as reported by Vandewarker and Snow (h9).

5.4.2 Farly Experiments

As mentioned inp section $.1, the initicl experimental work in
the field of holngraphy which was done hare consisted of duplicating a
borrowed hologram,® the subject of the hologram being a model train.
The apparatus which was used is ghown in figure 5.5, an: consisted of

& source, & collimating lens system, and 8 photocopy frame which was

. sed to hold the two filu plates in ¢lose contact: The illumination —— - —— —-

beam was inciuent .t @i = 0 in all cases, and no special vibration
elimination techniques were used.

Both the master hologram and the duplicate film plates were
Kodak type 649f film plates, 4™ x 5" x 04O size. The master holo-
gram Jas apparently msde without the use of spatial filtering in the

reference oeam, es it exhibited the charscteristic rings and swirls

of diftrection patterns caused by dust on the elements of a coherently

* The holwgrar was borrowed from Ivan Courtvright of Spectra Phy.ics
Corporation, and the experimental work wer done with the azsistance
of Milton Chang.
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illuminated optical system. This was, in fact, somevhat of an advan«
tage, because these large fluctuations in the transmission of the
master hologram made the duplication process less aensitive to the
total exposure,

A pumber of different sources wvere used, the first being s
helium-neon laser operated at 6328A°. A number of duplicate holo-
grams of a quality comparable to that of the master hologram were
obtained with th!se source, both with the emulsions in contact and
with the duplicate f{lm plate turned around (which provided a spacing
of ,0LO" Ybvetween the two emulsions).

The other sources consisted of a high pregsure mercury arc
lamp (PEX LABS MODEL 70l) used with a variety of filters, as noted
below:

(a) Spectrolab No. 2k12 (7A° wide at 68434°)

{(b) Spectrolab No. 1709 (100A° wide at 6328a°)

- “{e) Corntng 2-63 and 1-69 —{band pass 5900A° to 900OAS}—— —— ———
The coherence lengths of {a) and (b) are found from equation 5.7 and

are equal to €7C microns and LO microns, respectively. To compute the

.coherence length of source number (c¢) we must take into account the
; fact that the 649f type emulsion is only sensitive out to a wavelength
of sbout TOOOA®, which would make A) in this case equal to 1100A°,
and hence 1, = Ly for source (c).
All three of the above sources yielded duplicate holograms

of & quality comparable with that of the original hologram when the
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emulsion layers of the master hologram and duplicate hologram were
placed in contact (and held thers by the spring loaded photocopy
frar-;:, It is thus evident that there is little difficulty in reducing
the geparation distance between the two emulsion layers to a value suf-
ficfently smnll such that the duplicaticn can be dere with conventionel

sources,

5.3 Duplication of Reflection Holograms

In this section we will consider the case vhere one wishes to
duplicate a reflection hologram. It is clear, from the analysis and
discussion of reflection holograms in Chapter One, that it would be
completely meaningless to talk about making a "contact print' of such
a hologram. However, if one views the duplication process as that of
"making a hologram of a hologram,” it is quite straightforward %o

demonstrate that a duplicate reflection hologram can indeed be pro-

duced. What is required, as is the case with transmission helograms,
is to illuminate the duplicate film plate with essentially the same
field as was used to produce the master hologram. This can be done by
illuminating the master hologram plate sc that it yields a reconstruc-
tion of the original signal beam, and then placing the emulsion layer of
the duplicate film plate in the region where the interference pattern
generated by the illumination wave and the reconstructed signal beam
exists.

In the case where we are duplicating a transmission hologram,

this region exists on the side of the master film opposite that which
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i3 first {lluminated by the illumination besm, and hence the duplicate

. 7ilm plate is placed “"behind” the master hologram plate, as if making
a contact print, With a reflection hologram, however, this region
exists in ront of the mamster hologram plate, and hence we nmust place
the duplicate fila plate between the master hologram plate and the
illumination beam, as shown in figure 5.6b. The illumination wave
thus passes through the emulsion layer of the duplicate film plate
first, prior to striking the master hologram plate, The transmitted
portion of tue illumination wave then illuminates the master hologram
plate, producing a reconstruction of the signal beam in reflection,
which then illuminuates the duplicate film plate. An examination of the
situation shows that if the illumination wave is essentially the same
as the original reference beam, and if it produces a reconstruction of
the original signal beam, then the field which exposes the duplicate

. film plate is essentially the same as that which produced the master — — - — =

holeogram, and hence a duplicate 0logram will be obtained.

5.5,1 Source Requirements

We recall from the discussion of reflection holograms given
in Chapter One that there ure a number of fundamental differences be-
tveen reflection holograms and transmission holograms and these dif-
ferences will be reflected in the duplication process. We recall that
for a transmission hologram, & change in the wavelength of the illumi-
nation wave doesn't preclude the production of a duplicate holcgram,

as a reconstruction can usually be cbtained over a wide range of
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FIGURE 5.6 PRODUCTION AND DUPLICATION OF A REFLECTION HOLOGRAM.
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wavelengths with a transmission hologram, With the refiection holo-
gram, however, there i3 only 4 narrov band of vavelengths for wvhich a
reconstruction of the signal beam can be obtained. This means that the
illumination wave used in the duplicstion process must have a vavelength

within this same band.

5.2:2 Emulsion Shrinkage Effects

In the absence of any shrinkage of the emulsion layer during the
procesging of the master hologram film plate, the center waveiength of
the reflection band of the master hologram will be at about the same
vaveleagth as that of the original exposing field. If there is emul-~
sion shrinkage, then the reflection band will be shifted toward shorter
wavelengths. Fleisher et al (27), in an article dealing with an opti-
cally accessed memory using the Lippmann process, have reported record-

ing standing wave interference patterns using Kodak 64L9-f film plates

L450A°, Upatnieks et al (24), who also used Kodak 649-f rilm plates,
report similar lerge shifts in the reflection band of reflection holo=-
grams, atating that a reflection hologram made with red light requires
green light for the reconstruction. They also note, however, that
emulsion shrinkage can be reduced considerably by eliminating the fix-
ing atep of the development process.

It is apparent that emulsion shrinkage may prevent the use of
the same laser source in the duplication process as vas used to produce

the original reflection hologram, as while the reflection band may be

L A
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of the order of 50A° wide (27), shifts of 1000A° may cccur. If we are
forced to use n laser source of & different wavelength in the duplica-
tion process {assuming that one exists with the approximate 2 }, then
it is clear that the fields which expose the duplicate film plate will
nct be the sume as those that sxposed the original master hologram
plate. Thus the duplicate hologram will differ from that of the origi-
nsl. The most striking difference will de that the duplicate hologram
will have a different reflection band, being shifted again towards
shorter wavelengths due to emulsion shrinkege in the processing of the

duplicate film plete.

5.8.3 Use of Non-Laser Sources

It may vell be that in some cases no suitable laser source will
exist for the duplicetion process, or more likely, that none will be

available. If guch is the case, then a conventional source would have

length differences. A discussion ¢of these factors for the case of the
reflection hologram would be quite similar to that given iy =sction 5.4
for transmission holograms, and would add little new insight into the
problem, and hence will not be coneidered here. We should perhaps
note, howvever, that with reflection holograms we may be dealing with
very thick emulsions and hence the path iength differences assocjiated
with the path lengths within the master hologram plate should be given
more attention than they were in mection $.4.

If & conventional source is to be used in the duplication
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process, the question may well be rajsed ap to vhether or not the wave-

A
s

englh selechivity of the reflection holograa itself can be used tu take
the place of a narrow band light scurce. The basic i{dea of such a
scheme would be that since the refl2etion hologram reflects only in &
narrov portion ot the spectrum, the reflected light would be nmrrow
band, regardless of the spectral width of the illunination vave. The
refilected wave could thus interfere with that portion vf the illumina«
tion wave that lies with the band of reflected vaveélengths. There is
one obvious otjection to this scheme and that is that all of the illumi«
nation vwave passes through the duplicate film plate prior to reaching
the reflection hologram, and hence those wavelengths not of interest
would produce an undesirable level of background exposure, It may be,
however, that i this background level is not too high, bleaching of the
enulsion layer as described in Chapter Four may effectively remove it.

5.5.4 Efficiency

We shall limit our discussion of efficiency of duplicate re-

flection holograms to a brief discussion of the implications of having

the {llumination beam pass through the duplicate hologram film plate
first, prior to striking the master reflection hologram. We observe
that if the master hologram has a very low efficiency then the powver in
} ' the "reference beam" will be much greater than the power in the "signal
| beam" which exposes the duplicate film plate. This should result in a
very inefficient duplicate hologram. The situation is quite different

when we duplicate an inefflcient transmission hologram, when the in-
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efficiency {c due to overexposuré, as slthough the pover in the recon-

strustad lmsses may be low due Lo the alleduatiocn by the pigh back=- E

e e e n s et wr———— o

g

ground grain density, the “reference beam” is likewise attenuvated, anl

[

thus & favorable power ratic mey still te obtainea,
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5.6 Discussion )

In this chapter ve have described the dupiication process from l J
the point of view of making & hologram of a hologram, raiher than in

B terms of making a "contact print." Described in these terms, it be-
]

ettt

o comes ciear that the production of a duplicate hologram involves the

?i recording of interr=rence patterns, Just as is the case when one pro-

] .
[; . Quces & hologram by conventional means. In the case vhere the master }
|

{ hologram is & transmission holograsm, there are essgentially two such

interference patterns that need be considered, nawely those generated

by esth of the two firot-order '

‘images’ and the transmitted portion oo

the {ilum’nation wave, On the other hand, there is only one sush irter-
ference pattern that is recorded vhen we duplicate a reflection holo-

gram, as a reflection hologram only ylelds one "image" when i+ ig

‘? {lluminated.
We have seen that the nature of the duplicate hologram depends
primarily on the nature of the interference pattern {(or pstterus) that
i are produced vhen the master hologram is illuminated. 1In the case
vhere the master hologram is a "thick"” truns=mission hologrum, the nature
of the two interference patterns are highly dependent un the geometrical

characteristics of the illumination wave. A careful siudy was mwie of
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the effects of varying the angle of {ncidence of Lthe lliumination wave
vhuan the msgter hologram was a holographic diffraclion graling., From
this study ve arc able to conclude that varying the geometrical charac-
teristics of the illumination wave will not affect the form of the re-
constructed images produced Ly the duplicele grating, but will arfect
the overall efficiency of the duplicate hologram. Furthermore, if ihe
eguision layer of the duplicate hologram is itself "thick," then the
way in which the brightness of the images reconstructed vy the dupli-
cats hologram vary #ith the gepmetrical characteristics of the illumina-
tion bewn will be gtrongly dependent on the geometrirdl charamcteristics
of the Jllumination wave used in the duplication process. We recsll
from Chapter Four that in gerersl the most efficient reconstruction
of the signal beam is produced when the reference beam i3 used to illu-
minote the hologram. The sate principle applles in the case of the
duplicate hologram, cn}yrpov the reference beam referred to is the
flluminstion wave that was ueed in the duplication process. The effect
of" using 8 non-layer source was also'considercd. and it results in a
localization of the interfereace patterns in those regiona where %he
ﬁuth length differencez ure leas than the coherence length of the
source,

Tranemisslon holograms involving low spatlial frequencies cen
slso be treated frow the polnt of view developed in this chepter, al-
though most of the interesting effects predicted by this approach be-

come negligihle {n the jimit of very low spatial frequencies., For
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example, ve observe that as the apatial frequencies diminish to low
values, the sensitivity to the goometrical characteristics and co-
herence length decrease accordingly (the path length diflerences de-
¢réases as fB for lov spatial frequencies)., As the spatial frequen-
cles decrease to the point whére the variastions with depth are unimpor-
tant, the duplication process is quite adequately described in terms of
the transmittance approach described in Chapter Two. In such a case,
the duplication process can be viewed as that of making a "contact
print." It is clear, however, that this will never be the case with a
reflection hologram, as in this case it is the variations with depth
that produce the hologram.

We observe that the mechanical stability required in a holo-
gram duplication apparatus such as shown in Figure 5.1 is far iess

than what wouid be required in a conventional hologram apparatus, such

as shown in Figure 4.)l. The basic requirement for mechanical stability

iﬁ either case arises from the requirement that the interference pat-
tern that is being recorded remsin fixed with respect to the recording
media during the duration of the exposure. In the case where we are
duplicsting a hologram, the interference pattern is fixed with respect
to the master hologram plate, and hence all we need do is to be sure
that the duplicsate rilm plate remains fixed with respecct to the master
hologram plate, Furthermore, the allowvable relautive motion of the two
film plates can be fairly large if the spatial freguencies in the mas-
ter hologram are low. The situation is quite different vhen we are

recording & "master”" hologram. In this :ase, the interfercnce pattern
& P
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and filw plate are fixed with respect to m third iter  th- table on
which the apparatus is mounted. The aenaitivity to motion of che film
plate is similar to that of tre duplication process, being p-oportional
to the spatial frequencies being recorded. On the other hand, changes
in the path lengths involved in the interference pattern on the order

of /2 will completely wash out the recording of the interference
pattern, irrespective of the spatial frequencies involved. BSuch cuanges
could be produced by motions of the reflecting elements i the optical
syslem occurring after the beam is dfvidazd intc two portions,

In addition to the greatly redvced requiremente for muchenical
stability, a duplication apparatus can employ & source having a relative-
ly short cohererce length. Thus, although great effort may be required
@o prcduce a mrster hologram having & very large depth of field, such a
hologrem can be duplicated with no more effort than is required to

duplicate a hologram having a very limited depth of field.
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CHAPTER SIX
SUMMARY AND CONCLUSIONS -

A general anelytical method has been formulated for com-
puting the diffracted field that is produced when a volume holcogram
is illuminated, The diffracted field is computed in terms of the
initial exposing field, the characteristics of the recording media

{assumed to be film), and the illumination field. The analysis

¢ e ———— At et bt e o e P 824 b

allows for a careful accounting of the response of the recording
media, and is applic _ble to both transmission and reflection holo~
grams.

In the formulation of the analysis, it is assumed that
the exposing and illumination fields sre known and can be specified
in the region of space occuried by the hologram in the form or a

sum of plane or quasi-plane waves. The diffracted field is computed

in the immediate vicinit; of the hologram plate, and is alsc expressed

the fields in this form, and neglecting multiple scattering,ve are
able to compute each of the diffracted waves independently of the
others by solving a vearistion of the same basic problem, that of com-
puting the amplitudes, directions, and phases of the two-first order
vaves that are produced when a threc-dimensional sinusoidal array of
scattering particles ie illuminated by &« .lane wave.

The direct:ions and phases of the diffracted waves pro-
duced by transmission holngrams were found to be independent of the

three-/im:msional nature of the recording media, and are a function

e
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only of the direction, wsv;length, and phese of the illumination wave
and the pericvdicities of the recorded interference patterns in the
plane of the emulsion surface. General expressions vere derived
{equations 1.26, 1.28, and 1.34) for the directions and phases of
these diffracted waves, wvhich are equivalent to the equations used
by Offner {14), and these expressions are shown {in Chapter ‘vo)
tv be equivalent to the expressions used by Gabor (5) in his tor-
mulation of the theory of hologrephy.

 The eqguivalence of the ﬁwo approaches with respcct to the
computation of the directions and phases of the diffracted waves
stems from the fact that'theae quantities are independent of the
three-dimensionel nature of ;he recording media, and thus the char-
acterization of the emulsion layer by the amplitude transmittance as
done by Gebor, which implicitly neglects variations with depth, still
yields correct results for the directions and phases of the diffracted
waves - even when the concept of amplitude transmittance tecomes
questionable, as with thick transmission holograms involving high
spatial frequencies.

The transmittance approach, however, is not applicable te
reflection holograms or to the computation of the amplitudes of the
diffracted vaves. Reflection hc.ograms are treated using the analysis
formulated here, and it is shown that a reconstruction of the signal
beam is obtained when the illumination wave is the reference beam, but
that no real image beam accompanies the reconstruction of the signal

beam, or "virtual image.”" Reflection holograms are then briefly
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discussed and compared with tranamission holograms.

In computing the amplitudes of the two first-order waves

diffracted by the sinuscidal array of scattering particlea, the
individual scattered vaves are summed coherently, neglecting multiple
scattering. Reflection losses as well a8 attenuation within the

emulsion layer are taken into account, and the illumination wave is

alloved to have any direction or wavelength. The resulting expression
Tor the diffracted power (equation 4.57) is shown tc reduce to the

results of Leith et el (8), who neglect attenuation and reflection

5 losses and consider the case waere the wave vector of the illumi-
¢ ; nation vave has no omponent along the direction of the grating
lines.
Supporting and extending this mnalytical work was an experi-
mental study of the holographic diffraction grating. The ratic of

b 1 _the povwer diffracted into each of the first-order vaves to the illumi- —

) nation power was measured as a function of the direction of the
illumination wave for different gratings, using different polarizations
and wavelengths. Compariscn of computer generated curves with mea-
sured data showed that the theoretical and experimental results were
generally in good agreement. It was seen that for thick transmission
holograms, the power diffracted into the virtual or real images is
highly dependent on the direction of the illumination wave, and that
the power diffracted into thez virtual image is a maximum when the

illumination wave is the reference beam.

{
' The effect of having a reference beam which consists of &
I sut of pilane ~r quasi-plene waves was investigated (Zhapter Three),
|
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and it was shown that in order to obtain & reconstruction of the
signal beam, the hologram mugt be illuminated with almoast the identi-
cal reference beam that vas used to expose it. In practice this
usually requires that the experimentsl apparstus that was used to
expose the hologram be left undisturbed, and that the déveloped holo-
grar be exactly repositioned in the experimental setup., The power
diffracted into the virtual image was computed as a function of error
in repositioning the hologram plate for a specific experiment and
then measured, and the experimental and theoretical results were
found to be in agreement.

The fact that the reference beam consists of a series of
vaves rather than a single wave was seen to imply that the recon-
gtruction of the signel team is accompanied by a "background noise."
A signal to noise ratio was defined and computed, and found to

approach unity as the number of waves in the reference beam becomes

large.

Complex spatial filtering and character recognition opera-
tions were interpreted in terms of multiple wavefront reference bean
Fourier transform holography, and the effects of translations of the
transparency and hologram were investigated, both with plane wave
and diffuse illumination.

In Chapter Five the general analytical method for com-
puting the diffracted field was applied to the problem of the
duplication of holograms. It was shown that the duplication process

should be viewed as that of recording a holograr of & hologram,
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Hov rather than that of making a contact print. Experimental evidence

was presented to support this point of view, and the effect of vary-

ing the characteristics of the {llumination wave was dsscribed. In

bl Kl

addjtion, s simple method for duplicating rerflectiocn holograms vas

e

' 7 ropcsed and discussed.
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APPENDIX I

VECTOR INTERFERENCE OF TWO PLANE WAVEDS - PREFERRED FOLARIZATION
FOR _THE CASE WHERE THE RECORDING MEDIUM I8 FILM

In this appendix we shuli examine the interference pattert
generated by two plane waves of the same fregquency. We shall compute
the time average of the Poynting vector, energy in the electric field,
energy in the magnetic field and total energy. We shall then point out
that it makes a difference which quantity is used to characterize the
interference pattern and discuss the reasons vhy, in the case vhere the
recording medium is film, that the time average energy in the electric
field must be used to characterize the interference pattern. We will
then show that there is a preferred polarization with respect to ihe
recording of the interference pattern. .

Thus, let us consider the case where tvo plane waves exist in

5 2r (= I I~
k1 =3 (ex gin 0 + e, cos a) {1-1)
and
o0 , - -
Ea . 5 (-ex sin 0 + e, cos e) . (1-2)

The two waves will be assumed to have arbitrary eliptical polarizations

and thus their electric field vectors can be written in the form (using

complex notation and suppressing the factor e-iwt)
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‘ Belgye P8 v e 19G cono-i sino)e (1-3) |
| and
I 16 1¢ iR, F
tz a {E%: e V2 ;y + 320 e (;x cog & + ;z ein 6)le e {14}

vhere Eyl' Fyz’ Exo' E2O’ 6y1' 6y2' 610 and 620 are real constants.

The corresponding magretic field vectors are found from & straightfor-

L S il b e we

vard application of Maxwell's equations, using

}
L ...___.1 1.
h f = T 7 % E {1-%)

We find

- 14 id ik, 'r
£ yl - - L
. ﬁl = [Eylil; e (-ex cos O ¢ & ain o) + EIQJ - e ey]e

(1-6)
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F Byalg,/Te T ew o s o) vE/Ee PaTe ©

The total electric flield E = ﬁl + 52 can be decomposed into
two orthogonal fields ﬁ‘ and Eb’ with corresponding magnetic fields

F, snd ﬂb. which are given by

e y2
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.= J€ ... ik, res ) 1{K. -re6_.)
’ gn =, /: cos {Eyl g 1 ¥i . Eyg e ° y& '
ik, re8 ) i(k.  res )
§;z/§metzﬂe R P &
(1-9)
| and (K. .5+8. ) (K. -5o8, )
1 i e i rr4d
Eb - ;x cos © [Elo e ! 100, Eyp ® 2 20 )
1(k. -r+6, ) 1(k,_ -res,.)
-5, stno [E, e 1770 Epp ¢ ° 207, (1-10)
ilk. -res. ) 1k, r+6,.)
.z J< 1 %0 2'™%0 .
:, /::‘Eio . s By e ] (1-11)

____We observe E  is perpemdicular to the planeof incidence of the two——

vaves (the plane y » copstant) and Eb is in the plane of incidence.

We are interested in computing the time average of the
Poynting vector, electric energy density, magnetic energy density and

total energy density. Papas (56) shows that these quantities are given

! by
3w dpe (BExfv) (1-12)
W BB (1-13)
Woady Ae (I-14)
&

and
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¢ W Ve + Wn {I-13)

respectively. It is clear from an sxamination of the above four egqua-

R S bkl

ticns that due to the orthogonality of the fieclds El and Eb . the above
. quantities can be computed for each of these two fields separately.
i We find
|
'» - ¢ cos O
H 5, =%, /%t {251 . 252 v, E, eoa( 2 41n 0+ 6,1 - 6.5)]
i
)
: - € 8in O 2
I ‘e i [ESl - Eyz 2Eyl Ey2 nin( X g1n o+ 6 6:,2)]
. (1-16)
: . 2%x
| =t [32 + B2 o2t 2y Eyz cos(BE stn 0+ 6, - 5] (1-17)
1 2 2 2nx
UL & [Eyl + Ey_2 + 2 cos{20) E » y2 conf - 8in 0+ syl - 6y2”
(1-18)
and
1 2 2 2nx
Moo= e (B0 ¢ B, ¢ 2 con(0) By B, cosEEaino v g -5 ,)]
{1-19)

Similarly, we find

§
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< 2 ALY
¢ B, ¢ 2R By con(52S ain 0 4 b - 620)1

‘e 4f§ °ig 2 {gfo . ngc + 2 F cin(g§~ #in 6+ 8

i0 "2o 20”

{T-20)

U € [E2 + E + 2 cun(20) Eo Ey con( X yino e+ 810 620)]
(1-21)
1 X -
Vap " I € (Eio * 'go * 2B By cos{S T ain 0 4 6 - 45,0 (1-22)

and

T T = A — : T T T T
Womge [EIO + E,  + 2cos (0) LlO 20 cos( % uin 0 + 6 - 850))

(1-23)

It is clear from equations I1-16 to I-23 that it makes a con-
aiderable difference as to vhich quantity is taken to characterize the
interference pattern. This, of course, will depend on which of the
quantities is important in the recording or measuring process. In
holography, vhen the recording process involves file as the recording
mediwe, it is the time-average energy in the electric field that is

important. To understand vhy this is so, it is necessary to coansider
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some aspects of the formation of en image in the photographic process.

When the emulsion layer of the film is exposed to light of s sufficiently

short wavelengih, certain changes take piace which result in the forme

tion of what is termed the "latent image." When the film bearing this
latent image is chemically processed during the development procedure,
an image composed of metallic silver grains is formed, corresponding to
that which initially existed in the latent image.

what is of interest here is the interaction of the elec¢tro-
; magnetic field with the film emulsion in the formation of the latent
image. The nature of the process as it is presently understocd is Jdis-

cussed in detail in treatises on photographic chemistry and phctography

' (57, 58). The essential point with regard to this discussion is that

the process involves the interaction of the electromagnetic field with

4

. s bremide ion (BR™) in a silver bromide crystal within the emulsion ‘
b - — —— —layer,—with the extra electron being raised to a higherenergy stateé. 7]
Thus, the interaction of interest is essentislly that of the interaction
of an electromagnetic field with a nearly free electron, This problem

has been treated in detail, both from a classical point of view (59)

and from a Quantum mechanical point of view (60). One finds that it is
the electric field that is important in the interaction, and not the
b magnetic field.

Thus, since the recording of the interference pattern depends
primarily on He y ¥e should expect diff'erent results for the two dif-
ferent polarizations, Ea and Eb . Jomparing equations I-17 and I-21,

we observe that for small O , cos 20 m:1 and both cases are the same.
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However., as 0 increases, the vigibility of the 8¢ will decrease
for the case where the electric field vector is in © plae of inci-

dence, going to zero at 20 = 90° . On the other hand, the visibility
o7 the fringes will be independent of & whern the electric field vector
is perpendicular to the plane of incidence {Case a). These  Dbservations
were experimentally confirmed by Wiener (61) and are discussed in detail
by Born and Wolf (62).

It is clear then, in holographic experiments where the refer-
ence beam is brought in at a different angle from the signal beam, that
it is best to have the polarization of the signal beam avd reference beam
be perpendicular to the plane defined by the wvave vectors of the signal

and reference beams.

R gt D R AL Ao - e D e 8
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APPENDIX 1II
GRAIN DENSITY EQUATION

In this appendix an expression for the grain density is
derived in terms of the initial exposing field and film constants

¢, C,, === . The field within the emulsion during exposure of the

ol TV
film plate is given by (equation 1.6 )

ik ¥ M 1(k v+ ¢)
£-f e ° W, g g 0 o g-iwt
° nel

n + (1I-1)

The grain density D is expressed in terms of powers of IEI2 by

(equstion 1.7 )
M
D = C° + clb|2+ CJﬂ 4 e (11-2)

vhere Hz is given by

P = 8.8 . (11-3)

Substitution of B from equation II-1 into equation II-3 yields

ik °T ~i(k v+ ) ik o7 i(k g )
BBt sEl v e © TE B e " My o pp.p e B 4
[ n e n n [-] n

E -k )r -
+ T BB ei( o~ Fp)'E * 10, - 7p) . (11-4)

n,m

It is convenient to define the real numbers b n and Cm as follows

L hme o o ey et

S it g et <t sty W v o




2%
1 . _
A b = m ﬁo .ﬁn (11-5)
o
Cm - En-E. . (11-6)

Then E:B* can be written in the form

i(k -k _)'r-1 -1(k -k _)'re+s
R ST TR AL e

|
' - -~ -

i fre ei(kn - R )F g - 8) ' (1r.7)
i n,m

It is readily seen that the second and third terms in equation II-7
can he combined as follows:
e x(ﬁ;-ﬁ;)q-x¢n+—ez4ﬁ;-ﬁn+m¢,5 - L

gef b (e = 2205 b cos[(l?o-in)-i-ﬂin] .

! (11-8)
t
[ Noting that cm = cmn it can bve shown that the last term in equation

I1-7 cean be written in the form
|

R £ ot PO o g Rgg] . (11
S e = cos L it - . -
- _— nn o n n 'm
Jpon substitution of equations II-8 and II-9 into II.7 and !

regrouping, one obtains
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. - 2 - l. k k 0-
£fe Ea + anﬁi: L cos[(i° —ﬁn) r-fn} +n?m Com coc[(kn-k!) "¢n'¢m] .
{11-10)
L 2
The computation of B = (Na) is scmevhat lengthy but will
nevertheless be carried out in detail here. It is wmore prof'itable to
use the expression for bldgiven in equation II-7 rather than the ¢ne
given in equation II-10 , as it makes the eventual grouping of the
terus easier. The expression for l!:lzgiven by equation II-7 is of the

form of a sum of four terms. Recalling

(atbrcrd)® = 8 +b+024d% + 2ab + 2ac + 2ad + 2bc + 2bd + 2ed

it is seen that Eh is of the form (written in the order

2

2ab, 2ac, 2ad, a2, be, c“, d2, 2he, 2be, 2cd)

i(ok -k -k )r -1 +¢)
E' e oBPE2' + B2 T bb e O N D a(¢" P
[] ° on,m nnm _

g2 @ KB 308, ¢ 9,)

T bbb e
nm PO

. e ei(ﬁ -k m+ﬁp-iq)-x" ei(¢n-¢m*¢p-¢q)

n,m,p,qQ nm P
-t(k -k )or (g -9)
+ 2!2 T bnbue nm e ¢n n
® n,m

LR -k +K <K )F -i(g -9 +8.)
+ 2B z bncpqe(" RoP q) e ¢' ¢p+¢q
°n:p,q
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«4{f & . ). p -
+ ZE LI v»C e 1(“" E” Eq*ﬁp, i ei(g’n‘?’q ¢p)

(11-11)
neq o ap

This can be written in the form (recalling C__ = C

o QP)

£ - 2P.p N0l Fp b cosl(2k K -Fy) E g8,

+ 21:5 T b by cos[(in-ﬁm)'wn-%]

n,m

+ hEQnEJ; ncpq cos(( l.(o -Enﬂ'tp-ﬁq) . ;'¢n+¢p.¢q]
v g oo JSEREE)E 18 A

(11-12)
n,m,p,q o P4

The expressions for F!f and mh given in equations II-10 and II-12
are subgtituted in equation II-2 to yield

2 b 3 =)=
D= Co + CE + cano - (2"13, + M2E°) :: b cos[(io-kn) r-¢n]

+ (cl + 2C2Ef) ) > Coen °°‘[(Eu'im)';+¢n'¢n]

n,m

+ 2C ax: n?m bb co-[(ﬁn-ﬁm)'§+¢n~¢n]

+ 208§ o2 cos[2(F -R))-F-28,]




2

+ acalf n?; boo, cos((2k -k -k )-T-g -g."
nfa

" MeE, mg.q L Y

1(R_-E *k -E )7 4(f -p 49 -4 )
+¢c, T ¢_¢C e(“""q e " BPQ
n,n,p,q m M

+ higher order terms . (11-13)
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APPENDIX III

TRARSPORMATION EQUATIONS

In this appendix ve shiall list the transformation equations
for the coordinates and direction cosines that exist between the
x'y'2', xyz, and x"y"z" coordinate oystems, as referred tc in
Chapter One.

The xy: aystem is formed by a rotation of ¢ (equation

1.16) about the 2' uaxis. The corresponding transformation equation

are
x' = xcosd -y sin¢ (111-1)
y' = x 8in® + y cos ¢ (111-2)
' =g (111-3)
and
L' = tcosé -m sind (111-4)
w' = L siné ¢+ mcosd (111-95)
n'=n (111-6)

the x"y"z" system is formed by a rotation of B (equation 1.55)

about the x axis. The corresponding transformation equations are

x = x" ' (111-7)

ysy"cos B -2" sin 8 (111-8)

z=y" sin 8 + 2" cos B (111-9)
and

1= t" (111-10)

mn=n"cos 8 -n" sin 8 (1I1-11)

ns=sn" sin B + n" cos B8 (111-12)
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APPENDIX IV

R el

In this appendix we shall compute the effect of » transiation of

the film plate on the phase of orie of the diffracted wvaves vhich contri-

butes to the reconstruction of the m'd signal vave in equation 3.11.
There are P such vaves vhich contribute to the mth gignal vave, and

we sholl consider the §P one of these. This wave is produced by the

§ Jtb reference wave interacting with the psriodicity corresponding to

Pl € c&:m((f.1 - 'k") ST+ o,- 9,
¥
Tae loci of points of maximum grain density in this pericdicity is given
‘ vy

(EJ- k) T+ B9, = 2 (1v-1)
Defining, a8 before, the x y z coordinate system to be formed by a rota~

___tion of ¢ about the 1z2' axis, vhere

L 2
I"’ - n‘;

(2',m',n' Dbeing direction cosines in the x' y' z' system), equation

III-1 cen be written in the form (in the z = 0 plane)

(.J- l‘)y * ¢3 - D. . 2¢M . (IvV=3)

- A displacement of the film plate an amownt ay in the y direction
‘ means that we replace y by y - Ay in equation IV-3. The loci of

{ points of maximum grain density are then specified by

(-J -n Xy -by) Gy - fg= 2M . (Ivek)
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We specify the phuse of the wave diffracted by the periodicity under

consideration by requiring that the interference pattern gunerstad by
the transmitted portion of the illumination vave and the 4iffracted
wave "match up" with the recordsd interference pattern as specified by
- - equation IV-4, Since ve sre re-illuminating with one of the two
original waves vhich produced the pericdicity under consideration, one
of the first-ordsr waves will have the direction of the other initial

wave. The re-illumination interference pattern which is of interest

t is thus specified by (in the z = O plane)
} ('J' m )y + ¢J- Py= 2w . (1V=5)

We specify Gd by requiring that the loci of points of minimum electric

field in the above re-illumination pattern coincide with the locii of

points of maximum grain density. Thus we set M= 0 in equation Iv.b,
. solve for y, and substitute tiis value of y in equation IV-5, We then === ===

sclve squation IVe$ for Od with M= 1/2 . Thuws

- yo Bemd 4+ (1v-6)
o (a,- =)
J
and
g -4
(n-m)[i—L*M]OO -ﬂd- | (Iv7)
d B (2.~ ») J
J »
or
'd s Om-i-fAy(nJ- n.) . (Iv-8)

This is equivalent to the result specified by equation 3.15, which is
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slightly more general since it allowvs for a translation of the film
piate in the ¢ direction, while IV-8 only allows for & translation in
the x'y! plane, To show thiz equivalence ve express equation 3.15 in
the x y z coordinate BYstom dafined by equetion IV=2. Recalling that
13 = 1, in this u}nul. and taking F° = Ax 7: + by :y » squation 1.1k
becomes

Ppu = (my - m) oy (1v-9)
which correspoinds to having

Pa® Py -7+ tyimy-a) . (1v-10)
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APPENDIX V
TRANSPORM RELATTONS IN CONERENT OPTICAL SYSTEMS

In this appendix we shall review the subleet of transform re-
lations in coherent optical systems, Ve shall derive the relationship
betveen the field amplitudes in the front and back focal plane of an
ideal lens. The derivation which we shall give will be essentially
that given by Cutrona et al (29). Other derivations can be found in
articles by Champagne (30) and by Vander Lugt (Ll),

Let us con.ider the system swhown in Figure V-la. Some system,
such as = point gource in the focal plane of a lens, produces @« colli-
mated beanm which has some complex amplitude distributica El(xl,yl) in
plane P, . Ve vish to compute the resulting distribution E,(x,07,)

in P2 s Where the piane P2 is taken to be the back focal plane of

lens 1.

The method that will be used will be to apply Fresnel-
Kirchhoff diffraction theory, treating plane Pl &8 o large diffracting
aperture vith corplex transmittance zl(xl,yl) , 1lluminated by a plane
vave of unit amplitude at normal incidence. Thus, applying the results

of Presnel-Kirchhoff diffraction theory (6L), ve vrite

iky
Ez(xa.ya) ér-][ El(xl'yl) 51;— [1 ¢ cos tldxldyl (v-1)
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where the effect of the lens has been taken into account %y replacing

the distence S in the expenent by r |, the opticsl path length betveen
(xl,yl) and (se,ye) .

The quantity l_I_ggi_! will be removed from under the inte-
gral ané set equal to 2/ . Ncte that wr get 1/85 = 1/f not 1/feg ,
as we neglect the amplitude attenuation due to the distance g between
plane P1 and the lens, Bince we have a collimated beam to the left of

the lens. Thus
i ikr
Ex{xy:¥,) = = 5F ” Ej(x)oyy) ¢ axydy, - (v-2)

The next problem is to compute r , the ontical path length. This will
be done for the special two-dimensional case that results if we set
Vy®V¥p = 0 . Consider the diagrem shuwn in Figure V-1b. Since plane

P2 is the back fucal plane of the lens, a plane wave making an angle ©

with the normal to the P. (with vave vector k in the xz plane) is

brought to focus at the point (x2,0) in plane P2 « Any point on the

P{ plane which is taken to be a plane perpendicular to k 1is the seme

op*ical distance c¢ = T + r, from X, . The optical path length be-

tween (xl,O) and (x2,0) is thus seen to be

r(xlyosxano) = rl + r2 = d . (v.3)

Now

ry+r, = Vge - xi cos® © *'\/xg . £ (v=b)




el

or

r+’riq
17278

xR e

x
- (—5)2 cos

By similar triangles, it is seen that

x

X
8. .2
& f

X
2 g + r‘ 1+ (1?)2 .

(v-5)

(v-6)

It will be assumed that © is small, which implies that we can take

cos @ = ) and 2 €< 2

X
f

. Hence

X, X
A 2,2 2.2
rl+r2-ng-(—r)+fV1+(——r) .

Expanding the square root veing (1 + a)® %1 + na yields

4 X
n 1 ,%2.2 1 ,%2.2
7rl+r2-e[l:r27(r) ]+f[14+27(f) ] o
2
v g _2
SREPAEARRNCES R

The distance d is seen to be {from Figure V-1b)

but

hence

ds= xl sin 0O
X
gin ¢ = 7%

(v-7)

(V-10)

(v-11)
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X, X,
4 - 132 ) (v-12)
Thus 2
x
. g 2 _ Xtz X
r(xl,c xE,O) =g+ f+(1- f) 3¢ : . {v-13)

A similar, but more lengthy, computation yields for the general case
g * Ve XX, YyYp
(X, %9,) = g+ £+ (1 -8 ) - - . (V-14)

f f

The constant term g + f uill be suppressed since it merely adds a
constant phase ?:ctor. Thus, if we define B(xa.yz) as

4 2
X, +y
)= (1 - By (22

B(x (v-15)

22

then

1k8(x (x x, + ylya) :
*Eg(xgyghi ——t 4H—E—h¢lf)1 B 1. £ T

Defining the "spatial frequencies" ¢ and n as

g=22

7 % (v-1T)

and

ne=il Y, (v-18)

—1(€x + ny,)
.. & _ik8 1t ™) O (val
E,=--e ” E,(x,,¥,) dx, dy; (v-19)

o norn o e 10a ¢
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The above formulas vere derived assuming a time variation of the form

e-iut . lut

If a time varistion of the form e is used, then the re-

sult is & change in sign of k and hence §{ snd n are defined as

&.,—x (V-20)

n= - ""Y2 (V-2l)

and the expression for E2 becomes

-i(gxl + “3'1)

i -ikB
E, =55 JI El(xl,yl) e dxldyl . (v-22)

In the following we will use the it

time convention so equations
V-16 and V-19 will be applicable.
It is observed that when plane Pl is the front focal plane

of the lens, then g=f and 8 =0 . Thus, for this case, (apart

from & constant) El and E2 form a Fourier transform pair. Hence El

can be found from E2 by an inverse Fourier transform

1(gx, + ny,)
1.2 AL 1 1
By Gery) = - 02 [[ 3 ntem e % an (v-23)
2r . &8
or, since § = T x2 and n Y3 ¥2

1 £ 55 Guxy + vpyp)
APRART I | EXORAR ax,dy . (V=24)
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We can check to see if the constant 4i/iAf 18 correct by applying
Farseval's theorem and the conservation of energy. This is done as

follows: Conservation of energy requires that

L‘g ( x5 Jax 4y, (v-25)

ﬁh——*\-l

Ef(xl.yl)dxldv = J

where EE-BE'.

We have shown that 32 is given in terms of El by

ri -1fx, -iny
1 1 o6 )

E,=C I I El(xl,yl) e e dx, dy, (v-26)
or

1 i ~1(6x, + ny,)

c EE = J I El e dxldyl z f{El} . (v-21)
Thus E2/C and E1 form a Pourier transform pair. Applying Parseval's
theorem

a2 ] % i

I J Bf dx,dy, = (37) ] I = (¢,n) 4g dn (v-28)

or

o
1.2 2 (2%,,2
& | Z B e, )

iy,
——
j o]
=N
3
-
&
-
L]
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We observe conservation of energy requires =5 (ﬁ) z 1 , hence i

) | L

. ¢} = F . (v=30) |

1 4

&
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APFENDIX VI
SINUSOIDAL GRAIN DENSITY —~ ABSENCE OF THE

SECOND AND HIGHER ORDER WAVES

In this appendix ve shall show that if the spatial variatiom
of the grain density is sinusoidal, then only the first-order diffracted
waves are produced when the grains are illuminated with a plane wave.
Let us begin by summing the wvaves scattered by the grains located in
the z = 0 plane (we shall use the xyz coordinate lysten.defined in

Section 1.3.3). The grain density in thie plane is of the form
D(x,y,0) = D_ [1 + con(35L)] (VI-1)

where 4 is the periocdicity or fringe spacing in the z = 0 plane (the

plane of the emulsion surfece). The directions of the diffracted vaves

are specified (see Section 1.3.4) by requiring that there be no phase
difference between the vaves scattered by grains with the same y

coordinate and that there be a linear phase shift of
i2xRy
. q
as ve move in the y direction, vhere N is the diffracted order under

consideration (N = t1, #2, etc.). The amplitude of the particular

diffracted wvave under consideration is proportional to
i2vNy
A= J D(x,y,0) e d
Xy

dx dy (vi-2)
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vhere the integration over x and y corresponds to integrating
over the transverse extent of the hologram grating. Becsuse of the
periodic nature of D(x,y,0) we need only consider the integration
over y =0 to ymd , It is streightforwvard to show that
d idw
I {1+ col(gﬁl)] e ¢ dy
y=0

vanighes for all integer values of R except N = t1 , and thus ve

conclude that only the two-first order vaves vill be produced by the
grains in the z = 0 pleane., The same conclusion is reached for the
grains located in any plane z = constant and hence the grating vill

produce only the two first-crder waves.
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APPENDIX VII
PATH LENCTH DIFFEZRINCES

In this appendix we shall compute the path length differences
- invoived in the duplication of & holographic diffraction grating.
Illumination of the holographic diffraction grating ss shown in
Figure VII-1 with a plane vave produces two first-order diffracted
plane vaves and a zeroth-order plane wvave. The directian-. ed of the
diffracted vaves are found from

N

oin 6, = sin o, + —EQ (ViI-1)

We wish to consider the case where arrangement of the master
and duplicate plates is as shovn in Pigure VII-2, vhere the region be-
tween the two emulsion lay:rs is filled with a fluid heving an index of

refraction n . We shall cowpute the optical path lensth difference be-

R tween the zeroth-order wave and either of the two first order waves at
an arbitrary point P in the plane of the emulsion surface of the

duplicate film plate, We shall assume that the diffraction by the

! holographic diffraction grating takes place st the emulsion-fluid
interface (i.e., ve neglect the thickness of the emulsion layer) and
hence, as seen from Figure VII-2, the optical path length difference

f AL is glven by

AL = e al + nd2 - nd3 . (vii-2)

|
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We obeserve that

- 88

i, = hl Bin Hi

1
and that
h, + h
2 1
tan Bi - 3 .
Now
' -
h1 = § tan 9i h2
and
t
h2 = § tan Od
and hence
[] L
d, = §(tan o - tan eé) sin 6]
We see that
8
. 2 cowey
and
é
[
3 cos ei
and thus

6 " !_. [ ]
AL = [ne sin o] (tan 0/ - tan ed) .

Now, using Snell's Law

ne 8in BI = n sin Gi .

{VvII-3)

{¥r1.k)

(VII1-5)

(VII-6)

(VI1-7)

{vIr-8)

{(VII-9)

ei] {(VviI-10)

(VII-11)




equation VII-10 becomes

' i - i )
t * cos Ba cow Gi)

(vii-12)

] 8L = néf{tan 6; - tan eé) sin ©
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